Design Of Rotating Electrical Machines Pdf Download
This timely new edition offers up-to-date theory and guidelines for the design of electrical machines, taking into account recent advances in permanent magnet machines as well as synchronous reluctance machines. ELECTRICAL MACHINE-II - Ralph Ring. Ralph Ring is a technician who worked with Otis T. Carr in the late 1950s and early 1960s. Ring stresses that resonance is the key to design of rotating electrical machines PDF ePub Mobi Download design of rotating electrical machines PDF, ePub, Mobi Books design of rotating electrical machines PDF, ePub. Design Process and Properties of Rotating Electrical Machines 7.1 Asynchronous Motor 7.1.1 Current Linkage and Torque Production of an Asynchronous Machine 7.1.2 Impedance and Current Linkage of a Cage Winding 7.1.3 Characteristics of an Induction Machine 7.1.4 Equivalent Circuit Taking Asynchronous Torques and Harmonics into Account 7.1.5.
November 23, 2008
13:4
Printer Name: Yet to Come
DESIGN OF ROTATING ELECTRICAL MACHINES
Design of Rotating Electrical Machines Juha Pyrh¨onen, Tapani Jokinen and Val´eria Hrabovcov´a © 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-69516-6
i
OTE/SPH OTE/SPH FM JWBK312-Pyrh¨onen
November 23, 2008
13:4
Printer Name: Yet to Come
DESIGN OF ROTATING ELECTRICAL MACHINES Juha Pyrh¨onen Department of Electrical Engineering, Lappeenranta University of Technology, Finland
Tapani Jokinen Department of Electrical Engineering, Helsinki University of Technology, Finland
Val´eria Hrabovcov´a Department of Power Electrical Systems, Faculty of Electrical Engineering, ˇ University of Zilina, Slovak Republic
Translated by Hanna Niemel¨a Department of Electrical Engineering, Lappeenranta University of Technology, Finland
iii
OTE/SPH OTE/SPH FM JWBK312-Pyrh¨onen
November 23, 2008
13:4
Printer Name: Yet to Come
This edition first published 2008 0001 C 2008 John Wiley & Sons, Ltd Adapted from the original version in Finnish written by Juha Pyrh¨onen and published by Lappeenranta University C Juha Pyrh¨ of Technology 0001 onen, 2007 Registered office John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com. The right of the authors to be identified as the authors of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher. Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books. Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought. Library of Congress Cataloging-in-Publication Data Pyrh¨onen, Juha. Design of rotating electrical machines / Juha Pyrh¨onen, Tapani Jokinen, Val´eria Hrabovcov´a ; translated by Hanna Niemel¨a. p. cm. Includes bibliographical references and index. ISBN 978-0-470-69516-6 (cloth) 1. Electric machinery–Design and construction. 2. Electric generators–Design and construction. 3. Electric motors–Design and construction. 4. Rotational motion. I. Jokinen, Tapani, 1937– II. Hrabovcov´a, Val´eria. III. Title. TK2331.P97 2009 621.310002 042–dc22 2008042571 A catalogue record for this book is available from the British Library. ISBN: 978-0-470-69516-6 (H/B) Typeset in 10/12pt Times by Aptara Inc., New Delhi, India. Printed in Great Britain by CPI Antony Rowe, Chippenham, Wiltshire
iv
OTE/SPH OTE/SPH FM JWBK312-Pyrh¨onen
November 23, 2008
13:4
Printer Name: Yet to Come
Contents About the Authors
xi
Preface
xiii
Abbreviations and Symbols
xv
1 1.1 1.2 1.3
1 1 9 12 17 22
1.4 1.5 1.6 1.7 1.8
Principal Laws and Methods in Electrical Machine Design Electromagnetic Principles Numerical Solution The Most Common Principles Applied to Analytic Calculation 1.3.1 Flux Line Diagrams 1.3.2 Flux Diagrams for Current-Carrying Areas Application of the Principle of Virtual Work in the Determination of Force and Torque Maxwell’s Stress Tensor; Radial and Tangential Stress Self-Inductance and Mutual Inductance Per Unit Values Phasor Diagrams Bibliography
2 Windings of Electrical Machines 2.1 Basic Principles 2.1.1 Salient-Pole Windings 2.1.2 Slot Windings 2.1.3 End Windings 2.2 Phase Windings 2.3 Three-Phase Integral Slot Stator Winding 2.4 Voltage Phasor Diagram and Winding Factor 2.5 Winding Analysis 2.6 Short Pitching 2.7 Current Linkage of a Slot Winding 2.8 Poly-Phase Fractional Slot Windings 2.9 Phase Systems and Zones of Windings 2.9.1 Phase Systems 2.9.2 Zones of Windings
v
25 33 36 40 43 45 47 48 48 52 53 54 56 63 71 72 81 92 95 95 98
OTE/SPH OTE/SPH FM JWBK312-Pyrh¨onen
November 23, 2008
13:4
Printer Name: Yet to Come
vi
Contents
2.10 Symmetry Conditions 2.11 Base Windings 2.11.1 First-Grade Fractional Slot Base Windings 2.11.2 Second-Grade Fractional Slot Base Windings 2.11.3 Integral Slot Base Windings 2.12 Fractional Slot Windings 2.12.1 Single-Layer Fractional Slot Windings 2.12.2 Double-Layer Fractional Slot Windings 2.13 Single- and Two-Phase Windings 2.14 Windings Permitting a Varying Number of Poles 2.15 Commutator Windings 2.15.1 Lap Winding Principles 2.15.2 Wave Winding Principles 2.15.3 Commutator Winding Examples, Balancing Connectors 2.15.4 AC Commutator Windings 2.15.5 Current Linkage of the Commutator Winding and Armature Reaction 2.16 Compensating Windings and Commutating Poles 2.17 Rotor Windings of Asynchronous Machines 2.18 Damper Windings Bibliography
99 102 103 104 104 105 105 115 122 126 127 131 134 137 140
3
153 159 159 164 169 171 173 173 177 177
Design of Magnetic Circuits 3.1 Air Gap and its Magnetic Voltage 3.1.1 Air Gap and Carter Factor 3.1.2 Air Gaps of a Salient-Pole Machine 3.1.3 Air Gap of Nonsalient-Pole Machine 3.2 Equivalent Core Length 3.3 Magnetic Voltage of a Tooth and a Salient Pole 3.3.1 Magnetic Voltage of a Tooth 3.3.2 Magnetic Voltage of a Salient Pole 3.4 Magnetic Voltage of Stator and Rotor Yokes 3.5 No-Load Curve, Equivalent Air Gap and Magnetizing Current of the Machine 3.6 Magnetic Materials of a Rotating Machine 3.6.1 Characteristics of Ferromagnetic Materials 3.6.2 Losses in Iron Circuits 3.7 Permanent Magnets in Rotating Machines 3.7.1 History and Characteristics of Permanent Magnets 3.7.2 Operating Point of a Permanent Magnet Circuit 3.7.3 Application of Permanent Magnets in Electrical Machines 3.8 Assembly of Iron Stacks 3.9 Magnetizing Inductance Bibliography
142 145 147 150 152
180 183 187 193 200 200 205 213 219 221 224
OTE/SPH OTE/SPH FM JWBK312-Pyrh¨onen
November 23, 2008
13:4
Printer Name: Yet to Come
Contents
vii
4
Flux Leakage 4.1 Division of Leakage Flux Components 4.1.1 Leakage Fluxes Not Crossing an Air Gap 4.1.2 Leakage Fluxes Crossing an Air Gap 4.2 Calculation of Flux Leakage 4.2.1 Air-Gap Leakage Inductance 4.2.2 Slot Leakage Inductance 4.2.3 Tooth Tip Leakage Inductance 4.2.4 End Winding Leakage Inductance 4.2.5 Skewing Factor and Skew Leakage Inductance Bibliography
225 227 227 228 230 230 234 245 246 250 253
5
Resistances 5.1 DC Resistance 5.2 Influence of Skin Effect on Resistance 5.2.1 Analytical Calculation of Resistance Factor 5.2.2 Critical Conductor Height 5.2.3 Methods to Limit the Skin Effect 5.2.4 Inductance Factor 5.2.5 Calculation of Skin Effect Using Circuit Analysis 5.2.6 Double-Sided Skin Effect Bibliography
255 255 256 256 265 266 267 267 274 280
6
Main Dimensions of a Rotating Machine 6.1 Mechanical Loadability 6.2 Electrical Loadability 6.3 Magnetic Loadability 6.4 Air Gap Bibliography
281 291 293 294 297 300
7
Design Process and Properties of Rotating Electrical Machines 7.1 Asynchronous Motor 7.1.1 Current Linkage and Torque Production of an Asynchronous Machine 7.1.2 Impedance and Current Linkage of a Cage Winding 7.1.3 Characteristics of an Induction Machine 7.1.4 Equivalent Circuit Taking Asynchronous Torques and Harmonics into Account 7.1.5 Synchronous Torques 7.1.6 Selection of the Slot Number of a Cage Winding 7.1.7 Construction of an Induction Motor 7.1.8 Cooling and Duty Types 7.1.9 Examples of the Parameters of Three-Phase Industrial Induction Motors
301 313 315 320 327 332 337 339 342 343 348
OTE/SPH OTE/SPH FM JWBK312-Pyrh¨onen
November 23, 2008
13:4
Printer Name: Yet to Come
viii
7.1.10 Asynchronous Generator 7.1.11 Asynchronous Motor Supplied with Single-Phase Current 7.2 Synchronous Machine 7.2.1 Inductances of a Synchronous Machine in Synchronous Operation and in Transients 7.2.2 Loaded Synchronous Machine and Load Angle Equation 7.2.3 RMS Value Phasor Diagrams of a Synchronous Machine 7.2.4 No-Load Curve and Short-Circuit Test 7.2.5 Asynchronous Drive 7.2.6 Asymmetric-Load-Caused Damper Currents 7.2.7 Shift of Damper Bar Slotting from the Symmetry Axis of the Pole 7.2.8 V Curve of a Synchronous Machine 7.2.9 Excitation Methods of a Synchronous Machine 7.2.10 Permanent Magnet Synchronous Machines 7.2.11 Synchronous Reluctance Machines 7.3 DC Machines 7.3.1 Configuration of DC Machines 7.3.2 Operation and Voltage of a DC Machine 7.3.3 Armature Reaction of a DC Machine and Machine Design 7.3.4 Commutation 7.4 Doubly Salient Reluctance Machine 7.4.1 Operating Principle of a Doubly Salient Reluctance Machine 7.4.2 Torque of an SR Machine 7.4.3 Operation of an SR Machine 7.4.4 Basic Terminology, Phase Number and Dimensioning of an SR Machine 7.4.5 Control Systems of an SR Motor 7.4.6 Future Scenarios for SR Machines Bibliography 8
Insulation of Electrical Machines 8.1 Insulation of Rotating Electrical Machines 8.2 Impregnation Varnishes and Resins 8.3 Dimensioning of an Insulation 8.4 Electrical Reactions Ageing Insulation 8.5 Practical Insulation Constructions 8.5.1 Slot Insulations of Low-Voltage Machines 8.5.2 Coil End Insulations of Low-Voltage Machines 8.5.3 Pole Winding Insulations 8.5.4 Low-Voltage Machine Impregnation 8.5.5 Insulation of High-Voltage Machines 8.6 Condition Monitoring of Insulation 8.7 Insulation in Frequency Converter Drives Bibliography
Contents
351 353 358 359 370 376 383 386 391 392 394 394 395 400 404 404 405 409 411 413 414 415 416 419 422 425 427 429 431 436 440 443 444 445 445 446 447 447 449 453 455
OTE/SPH OTE/SPH FM JWBK312-Pyrh¨onen
November 23, 2008
13:4
Printer Name: Yet to Come
Contents
9
Heat Transfer 9.1 Losses 9.1.1 Resistive Losses 9.1.2 Iron Losses 9.1.3 Additional Losses 9.1.4 Mechanical Losses 9.2 Heat Removal 9.2.1 Conduction 9.2.2 Radiation 9.2.3 Convection 9.3 Thermal Equivalent Circuit 9.3.1 Analogy between Electrical and Thermal Quantities 9.3.2 Average Thermal Conductivity of a Winding 9.3.3 Thermal Equivalent Circuit of an Electrical Machine 9.3.4 Modelling of Coolant Flow 9.3.5 Solution of Equivalent Circuit 9.3.6 Cooling Flow Rate Bibliography
ix
457 458 458 460 460 460 462 463 466 470 476 476 477 479 488 493 495 496
Appendix A
497
Appendix B
501
Index
503
OTE/SPH OTE/SPH FM JWBK312-Pyrh¨onen
November 23, 2008
13:4
Printer Name: Yet to Come
About the Authors Juha Pyrh¨onen is a Professor in the Department of Electrical Engineering at Lappeenranta University of Technology, Finland. He is engaged in the research and development of electric motors and drives. He is especially active in the fields of permanent magnet synchronous machines and drives and solid-rotor high-speed induction machines and drives. He has worked on many research and industrial development projects and has produced numerous publications and patents in the field of electrical engineering. Tapani Jokinen is a Professor Emeritus in the Department of Electrical Engineering at Helsinki University of Technology, Finland. His principal research interests are in AC machines, creative problem solving and product development processes. He has worked as an electrical machine design engineer with Oy Str¨omberg Ab Works. He has been a consultant for several companies, a member of the Board of High Speed Tech Ltd and Neorem Magnets Oy, and a member of the Supreme Administrative Court in cases on patents. His research projects include, among others, the development of superconducting and large permanent magnet motors for ship propulsion, the development of high-speed electric motors and active magnetic bearings, and the development of finite element analysis tools for solving electrical machine problems. Val´eria Hrabovcov´a is a Professor of Electrical Machines in the Department of Power ˇ Electrical Systems, Faculty of Electrical Engineering, at the University of Zilina, Slovak Republic. Her professional and research interests cover all kinds of electrical machines, electronically commutated electrical machines included. She has worked on many research and development projects and has written numerous scientific publications in the field of electrical engineering. Her work also includes various pedagogical activities, and she has participated in many international educational projects.
xi
OTE/SPH OTE/SPH FM JWBK312-Pyrh¨onen
November 23, 2008
13:4
Printer Name: Yet to Come
Preface Electrical machines are almost entirely used in producing electricity, and there are very few electricity-producing processes where rotating machines are not used. In such processes, at least auxiliary motors are usually needed. In distributed energy systems, new machine types play a considerable role: for instance, the era of permanent magnet machines has now commenced. About half of all electricity produced globally is used in electric motors, and the share of accurately controlled motor drives applications is increasing. Electrical drives provide probably the best control properties for a wide variety of processes. The torque of an electric motor may be controlled accurately, and the efficiencies of the power electronic and electromechanical conversion processes are high. What is most important is that a controlled electric motor drive may save considerable amounts of energy. In the future, electric drives will probably play an important role also in the traction of cars and working machines. Because of the large energy flows, electric drives have a significant impact on the environment. If drives are poorly designed or used inefficiently, we burden our environment in vain. Environmental threats give electrical engineers a good reason for designing new and efficient electric drives. Finland has a strong tradition in electric motors and drives. Lappeenranta University of Technology and Helsinki University of Technology have found it necessary to maintain and expand the instruction given in electric machines. The objective of this book is to provide students in electrical engineering with an adequate basic knowledge of rotating electric machines, for an understanding of the operating principles of these machines as well as developing elementary skills in machine design. However, due to the limitations of this material, it is not possible to include all the information required in electric machine design in a single book, yet this material may serve as a manual for a machine designer in the early stages of his or her career. The bibliographies at the end of chapters are intended as sources of references and recommended background reading. The Finnish tradition of electrical machine design is emphasized in this textbook by the important co-authorship of Professor Tapani Jokinen, who has spent decades in developing the Finnish machine design profession. An important view of electrical machine design is provided by Professor Val´eria Hrabovcov´a from Slovak Republic, which also has a strong industrial tradition. We express our gratitude to the following persons, who have kindly provided material for this book: Dr Jorma Haataja (LUT), Dr Tanja Hedberg (ITT Water and Wastewater AB), Mr Jari J¨appinen (ABB), Ms Hanne Jussila (LUT), Dr Panu Kurronen (The Switch Oy), Dr Janne Nerg (LUT), Dr Markku Niemel¨a (ABB), Dr Asko Parviainen (AXCO Motors Oy),
xiii
OTE/SPH OTE/SPH FM JWBK312-Pyrh¨onen
xiv
November 23, 2008
13:4
Printer Name: Yet to Come
Preface
Mr Marko Rilla (LUT), Dr Pia Salminen (LUT), Mr Ville Sihvo and numerous other colleagues. Dr Hanna Niemel¨a’s contribution to this edition and the publication process of the manuscript is highly acknowledged. Juha Pyrh¨onen Tapani Jokinen Val´eria Hrabovcov´a
OTE/SPH OTE/SPH FM JWBK312-Pyrh¨onen
November 23, 2008
13:4
Printer Name: Yet to Come
Abbreviations and Symbols A A A AC AM A1–A2 a B Br Bsat B B1–B2 b b0c bc bd bdr bds br bs bv b0 C C C1–C2 Cf c cp cth CTI cv D DC
linear current density [A/m] magnetic vector potential [V s/m] temperature class 105 ◦ C alternating current asynchronous machine armature winding of a DC machine number of parallel paths in windings without commutator: per phase, in windings with a commutator: per half armature, diffusivity magnetic flux density, vector [V s/m2 ], [T] remanence flux density [T] saturation flux density [T] temperature class 130 ◦ C commutating pole winding of a DC machine width [m] conductor width [m] conductor width [m] tooth width [m] rotor tooth width [m] stator tooth width [m] rotor slot width [m] stator slot width [m] width of ventilation duct [m] slot opening [m] capacitance [F], machine constant, integration constant temperature class >180 ◦ C compensating winding of a DC machine friction coefficient specific heat capacity [J/kg K], capacitance per unit of length, factor, divider, constant specific heat capacity of air at constant pressure heat capacity Comparative Tracking Index specific volumetric heat [kJ/K m3 ] electric flux density [C/m2 ], diameter [m] direct current
xv
OTE/SPH OTE/SPH FM JWBK312-Pyrh¨onen
xvi
Dr Dri Ds Dse D1–D2 d dt E Ea E E E E1–E2 e e F F F FEA Fg Fm F1–F2 f g G G th H Hc , HcB HcJ H h h 0c hc hd hp h p2 hs h yr h ys I IM Ins Io Is
November 23, 2008
13:4
Printer Name: Yet to Come
Abbreviations and Symbols
outer diameter of the rotor [m] inner diameter of the rotor [m] inner diameter of the stator [m] outer diameter of the stator [m] series magnetizing winding of a DC machine thickness [m] thickness of the fringe of a pole shoe [m] electromotive force (emf) [V], RMS, electric field strength [V/m], scalar, elastic modulus, Young’s modulus [Pa] activation energy [J] electric field strength, vector [V/m] temperature class 120 ◦ C irradiation shunt winding of a DC machine electromotive force [V], instantaneous value e(t) Napier’s constant force [N], scalar force [N], vector temperature class 155 ◦ C finite element analysis geometrical factor 0001 magnetomotive force H · dl [A], (mmf) separate magnetizing winding of a DC machine or a synchronous machine frequency [Hz], Moody friction factor coefficient, constant, thermal conductance per unit length electrical conductance thermal conductance magnetic field strength [A/m] coercivity related to flux density [A/m] coercivity related to magnetization [A/m] temperature class 180 ◦ C, hydrogen height [m] conductor height [m] conductor height [m] tooth height [m] height of a subconductor [m] height of pole body [m] stator slot height [m] height of rotor yoke [m] height of stator yoke [m] electric current [A], RMS, brush current, second moment of an area, moment of inertia of an area [m4 ] induction motor counter-rotating current (negative-sequence component) [A] current of the upper bar [A] conductor current
OTE/SPH OTE/SPH FM JWBK312-Pyrh¨onen
November 23, 2008
Abbreviations and Symbols
Iu IC IEC Im i J J Jext JM Jsat Js j j K KL k
13:4
Printer Name: Yet to Come
xvii
current of the lower bar, slot current, slot current amount [A] classes of electrical machines International Electrotechnical Commission imaginary part current [A], instantaneous value i(t) moment of inertia [kg m2 ], current density [A/m2 ], magnetic polarization Jacobian matrix moment of inertia of load [kg m2 ] moment of inertia of the motor, [kgm2 ] saturation of polarization [V s/m2 ] surface current, vector [A/m] difference of the numbers of slots per pole and phase in different layers imaginary unit transformation ratio, constant, number of commutator segments inductance ratio connecting factor (coupling factor), correction coefficient, safety factor, ordinal of layers Carter factor kC space factor for copper, space factor for iron kCu , kFe distribution factor kd machine-related constant kE correction factor kFe ,n short-circuit ratio kk skin effect factor for the inductance kL pitch factor kp pitch factor due to coil side shift kpw skin effect factor for the resistance kR saturation factor ksat skewing factor ksq coefficient of heat transfer [W/m2 K] kth pitch factor of the coil side shift in a slot kv winding factor kw safety factor in the yield kσ L self-inductance [H] L characteristic length, characteristic surface, tube length [m] LC inductor–capacitor tooth tip leakage inductance [H] Ld short-circuit inductance [H] Lk magnetizing inductance [H] Lm magnetizing inductance of an m-phase synchronous machine, in d-axis [H] L md mutual inductance [H] L mn main inductance of a single phase [H] L pd slot inductance [H] Lu transient inductance [H] L0002 subtransient inductance [H] L 00020002 L1, L2, L3, network phases
OTE/SPH OTE/SPH FM JWBK312-Pyrh¨onen
xviii
l l l0002 lew lp lpu lw M Msat m m0 N Nf1 Nu Nu1 Nk Np Nv N N Neven Nodd n n nU nv n0002 P Pin PAM PMSM PWM P1 , Pad , P Pr Pρ p pAl p∗ pd Q Q av Qo Q0002 Q∗
November 23, 2008
13:4
Printer Name: Yet to Come
Abbreviations and Symbols
length [m], closed line, distance, inductance per unit of length, relative inductance, gap spacing between the electrodes unit vector collinear to the integration path effective core length [m] average conductor length of winding overhang [m] wetted perimeter of tube [m] inductance as a per unit value length of coil ends [m] mutual inductance [H], magnetization [A/m] saturation magnetization [A/m] number of phases, mass [kg], constant number of turns in a winding, number of turns in series number of coil turns in series in a single pole Nusselt number number of bars of a coil side in the slot number of turns of compensating winding number of turns of one pole pair number of conductors in each side Nondrive end set of integers set of even integers set of odd integers normal unit vector of the surface rotation speed (rotation frequency) [1/s], ordinal of the harmonic (sub), ordinal of the critical rotation speed, integer, exponent number of section of flux tube in sequence number of ventilation ducts number of flux tube power, losses [W] input power [W] pole amplitude modulation permanent magnet synchronous machine (or motor) pulse width modulation additional loss [W] Prandtl number friction loss [W] number of pole pairs, ordinal, losses per core length aluminium content number of pole pairs of a base winding partial discharge electric charge [C], number of slots, reactive power [VA], average number of slots of a coil group number of free slots number of radii in a voltage phasor graph number of slots of a base winding
OTE/SPH OTE/SPH FM JWBK312-Pyrh¨onen
November 23, 2008
13:4
Printer Name: Yet to Come
Abbreviations and Symbols
Q th q qk qm qth R Rbar RM RMS Rm Rth Re Re Recrit RR r r S1–S8 S SM SR SyRM Sc Sp Sr S s T Ta Tam Tb tc TEFC TJ Tmec Tu Tv Tl t t tc tr t* U
quantity of heat number of slots per pole and phase, instantaneous charge, q(t) [C] number of slots in a single zone mass flow [kg/s] density of the heat flow [W/m2 ] resistance [0004], gas constant, 8.314 472 [J/K mol], thermal resistance, reactive parts bar resistance [0004] reluctance machine root mean square reluctance [A/V s = 1/H] thermal resistance [K/W] real part Reynolds number critical Reynolds number Resin-rich (impregnation method) radius [m], thermal resistance per unit length radius unit vector duty types apparent power [VA], cross-sectional area synchronous motor switched reluctance synchronous reluctance machine cross-sectional area of conductor [m2 ] pole surface area [m2 ] rotor surface area facing the air gap [m2 ] Poynting’s vector [W/m2 ], unit vector of the surface slip, skewing measured as an arc length torque [N m], absolute temperature [K], period [s] Taylor number modified Taylor number pull-out torque, peak torque [N m] commutation period [s] totally enclosed fan-cooled mechanical time constant [s] mechanical torque [N m] pull-up torque [N m] counter torque [N m] locked rotor torque, [N m] time [s], number of phasors of a single radius, largest common divider, lifetime of insulation tangential unit vector commutation period [s] rise time [s] number of layers in a voltage vector graph for a base winding voltage [V], RMS
xix
OTE/SPH OTE/SPH FM JWBK312-Pyrh¨onen
xx
U Um Usj Uv U1 U2 u u b1 uc um V V Vm VPI V1 V2 v v W W Wd Wfc Wmd Wmt WR W0002 W1 W2 WΦ w X x xm Y Y y ym yn yφ yv y1 y2 yC
November 23, 2008
13:4
Printer Name: Yet to Come
Abbreviations and Symbols
depiction of a phase magnetic voltage [A] peak value of the impulse voltage [V] coil voltage [V] terminal of the head of the U phase of a machine terminal of the end of the U phase of a machine voltage, instantaneous value u(t) [V], number of coil sides in a layer blocking voltage of the oxide layer [V] commutation voltage [V] mean fluid velocity in tube [m/s] volume [m3 ], electric potential depiction of a phase scalar magnetic potential [A] vacuum pressure impregnation terminal of the head of the V phase of a machine terminal of the end of the V phase of a machine speed, velocity [m/s] vector energy [J], coil span (width) [m] depiction of a phase energy returned through the diode to the voltage source in SR drives energy stored in the magnetic field in SR machines energy converted to mechanical work while de-energizing the phase in SR drives energy converted into mechanical work when the transistor is conducting in SR drives energy returning to the voltage source in SR drives coenergy [J] terminal of the head of the W phase of a machine terminal of the end of the W phase of a machine magnetic energy [J] length [m], energy per volume unit reactance [0004] coordinate, length, ordinal number, coil span decrease [m] relative value of reactance admittance [S] temperature class 90 ◦ C coordinate, length, step of winding winding step in an AC commutator winding coil span in slot pitches coil span of full-pitch winding in slot pitches (pole pitch expressed in number of slots per pole) coil span decrease in slot pitches step of span in slot pitches, back-end connector pitch step of connection in slot pitches, front-end connector pitch commutator pitch in number of commutator segments
OTE/SPH OTE/SPH FM JWBK312-Pyrh¨onen
November 23, 2008
Abbreviations and Symbols
Z ZM Zs Z0 z za zb zc zp zQ zt α 1/α α DC αi αm α ph α PM αr α SM α str α th αu αz αρ β Γ Γc γ γc γD δ δc δe δ ef δv δT δ0002 δ0 ε εth ε0
13:4
Printer Name: Yet to Come
xxi
impedance [0004], number of bars, number of positive and negative phasors of the phase characteristic impedance of the motor [0004] surface impedance [0004] characteristic impedance [0004] coordinate, length, integer, total number of conductors in the armature winding number of adjacent conductors number of brushes number of coils number of parallel-connected conductors number of conductors in a slot number of conductors on top each other angle [rad], [◦ ], coefficient, temperature coefficient, relative pole width of the pole shoe, convection heat transfer coefficient [W/K] depth of penetration relative pole width coefficient for DC machines factor of the arithmetical average of the flux density mass transfer coefficient [(mol/sm2 )/(mol/m3 ) = m/s] angle between the phase winding relative permanent magnet width heat transfer coefficient of radiation relative pole width coefficient for synchronous machines angle between the phase winding heat transfer coefficient [W/m2 K] slot angle [rad], [◦ ] phasor angle, zone angle [rad], [◦ ] angle of single phasor [rad], [◦ ] angle [rad], [◦ ], absorptivity energy ratio, integration route interface between iron and air angle [rad], [◦ ], coefficient commutation angle [rad], [◦ ] switch conducting angle [rad], [◦ ] air gap (length), penetration depth [m], dissipation angle [rad], [◦ ], load angle [rad], [◦ ] the thickness of concentration boundary layer [m] equivalent air gap (slotting taken into account) [m] effective air gap(influence of iron taken into account) velocity boundary layer [m] temperature boundary layer [m] load angle [rad], [◦ ], corrected air gap [m] minimum air gap [m] permittivity [F/m], position angle of the brushes [rad], [◦ ], stroke angle [rad], [◦ ], amount of short pitching emissitivity permittivity of vacuum 8.854 × 10−12 [F/m]
OTE/SPH OTE/SPH FM JWBK312-Pyrh¨onen
xxii
ζ η Θ Θk Θ θ ϑ κ Λ λ µ µr µ0 ν ξ ρ ρA ρE ρν σ σF σ Fn σ Ftan σmec σSB τ τp τ q2 τr τs τu τv τd0002 0002 τd0 00020002 τd0 τq00020002 00020002 τq0 υ Φ Φth Φδ
November 23, 2008
13:4
Printer Name: Yet to Come
Abbreviations and Symbols
phase angle [rad], [◦ ], harmonic factor efficiency, empirical constant, experimental pre-exponential constant, reflectivity current linkage [A], temperature rise [K] compensating current linkage [A] total current linkage [A] angle [rad], [◦ ] angle [rad], [◦ ] angle [rad], [◦ ], factor for reduction of slot opening, transmissivity permeance, [Vs/A], [H] thermal conductivity [W/m K], permeance factor, proportionality factor, inductance factor, inductance ratio permeability [V s/A m, H/m], number of pole pairs operating simultaneously per phase, dynamic viscosity [Pa s, kg/s m] relative permeability permeability of vacuum, 4π × 10−7 [V s/A m, H/m] ordinal of harmonic, Poisson’s ratio, reluctivity [A m/V s, m/H], pulse velocity reduced conductor height resistivity [0004 m], electric charge density [C/m2 ], density [kg/m3 ], reflection factor, ordinal number of a single phasor absolute overlap ratio effective overlap ratio transformation ratio for IM impedance, resistance, inductance specific conductivity, electric conductivity [S/m], leakage factor, ratio of the leakage flux to the main flux tension [Pa] normal tension [Pa] tangential tension [Pa] mechanical stress [Pa] Stefan–Boltzmann constant, 5.670 400 × 10−8 W/m2 /K4 relative time pole pitch [m] pole pitch on the pole surface [m] rotor slot pitch [m] stator slot pitch [m] slot pitch [m] zone distribution direct-axis transient short-circuit time constant [s] direct-axis transient open-circuit time constant [s] direct-axis subtransient open-circuit time constant [s] quadrature-axis subtransient short-circuit time constant [s] quadrature-axis subtransient open-circuit time constant [s] factor, kinematic viscosity, µ/ρ, [Pa s/(kg/m3 )] magnetic flux [V s, Wb] thermal power flow, heat flow rate [W] air gap flux [V s], [Wb]
OTE/SPH OTE/SPH FM JWBK312-Pyrh¨onen
November 23, 2008
13:4
Printer Name: Yet to Come
Abbreviations and Symbols
φ ϕ ϕ0002 0018 ψ ψ0002 χ Ω ω 001cT ∇T 001cp
xxiii
magnetic flux, instantaneous value φ(t) [V s], electric potential [V] phase shift angle [rad], [◦ ] function for skin effect calculation magnetic flux linkage [V s] electric flux [C], function for skin effect calculation length/diameter ratio, shift of a single pole pair mechanical angular speed [rad/s] electric angular velocity [rad/s], angular frequency [rad/s] temperature rise [K, ◦ C] temperature gradient [K/m, ◦ C/m] pressure drop [Pa]
Subscripts 0 1 2 Al a ad av B b bar bearing C Cu c contact conv cp cr, crit D DC d EC e ef el em ew ext F Fe f
section primary, fundamental component, beginning of a phase, locked rotor torque, secondary, end of a phase aluminium armature, shaft additional (loss) average brush base value, peak value of torque, blocking bar bearing (losses) capacitor copper conductor, commutation brush contact convection commutating poles critical direct, damper direct current tooth, direct, tooth tip leakage flux eddy current equivalent effective electric electromagnetic end winding external force iron field
OTE/SPH OTE/SPH FM JWBK312-Pyrh¨onen
November 23, 2008
13:4
Printer Name: Yet to Come
xxiv
Hy i k M m mag max mec min mut N n ns o opt PM p p1 p2 ph ps pu q r res S s sat sj sq str syn tan test th tot u v w x y ya yr ys z δ
Abbreviations and Symbols
hysteresis internal, insulation compensating, short circuit, ordinal motor mutual, main magnetizing, magnetic maximum mechanical minimum mutual rated nominal, normal negative-sequence component starting, upper optimal permanent magnet pole, primary, subconductor, pole leakage flux pole shoe pole body phasor, phase positive-sequence component per unit quadrature, zone rotor, remanence, relative resultant surface stator saturation impulse wave skew phase section synchronous tangential test thermal total slot, lower, slot leakage flux, pull-up torque zone, coil side shift in a slot, coil end winding leakage flux x-direction y-direction, yoke armature yoke rotor yoke stator yoke z-direction, phasor of voltage phasor graph air gap
OTE/SPH OTE/SPH FM JWBK312-Pyrh¨onen
November 23, 2008
13:4
Printer Name: Yet to Come
Abbreviations and Symbols
γ ν ρ ρ ρw σ Φ
ordinal of a subconductor harmonic ordinal number of single phasor friction loss windage (loss) flux leakage flux
Subscripts ˆ 0002
*
A B I I
peak/maximum value, amplitude imaginary, apparent, reduced, virtual base winding, complex conjugate Boldface symbols are used for vectors with components parallel to the unit vectors i, j and k vector potential, A = i Ax + j Ak + k Az flux density, B = i Bx + j Bk + kBz complex phasor of the current bar above the symbol denotes average value
xxv
P1: OTA/XYZ P2: ABC c01 JWBK312-Pyrhonen
November 23, 2008
15:36
Printer Name: Yet to Come
1 Principal Laws and Methods in Electrical Machine Design 1.1 Electromagnetic Principles A comprehensive command of electromagnetic phenomena relies fundamentally on Maxwell’s equations. The description of electromagnetic phenomena is relatively easy when compared with various other fields of physical sciences and technology, since all the field equations can be written as a single group of equations. The basic quantities involved in the phenomena are the following five vector quantities and one scalar quantity: Electric field strength Magnetic field strength Electric flux density Magnetic flux density Current density Electric charge density, dQ/dV
E H D B J ρ
[V/m] [A/m] [C/m2 ] [V s/m2 ], [T] [A/m2 ] [C/m3 ]
The presence of an electric and magnetic field can be analysed from the force exerted by the field on a charged object or a current-carrying conductor. This force can be calculated by the Lorentz force (Figure 1.1), a force experienced by an infinitesimal charge dQ moving at a speed v. The force is given by the vector equation dF = dQ(E + v × B) = dQE +
dQ dl × B = dQE + idl × B. dt
(1.1)
In principle, this vector equation is the basic equation in the computation of the torque for various electrical machines. The latter part of the expression in particular, formulated with a current-carrying element of a conductor of the length dl, is fundamental in the torque production of electrical machines.
Design of Rotating Electrical Machines Juha Pyrh¨onen, Tapani Jokinen and Val´eria Hrabovcov´a © 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-69516-6
P1: OTA/XYZ P2: ABC c01 JWBK312-Pyrhonen
November 23, 2008
15:36
Printer Name: Yet to Come
2
Design of Rotating Electrical Machines
i dF
dl β
B
Figure 1.1 Lorentz force dF acting on a differential length dl of a conductor carrying an electric current i in the magnetic field B. The angle β is measured between the conductor and the flux density vector B. The vector product i dl × B may now be written in the form i dl × B = idlB sin β
Example 1.1: Calculate the force exerted on a conductor 0.1 m long carrying a current of 10 A at an angle of 80◦ with respect to a field density of 1 T. Solution: Using (1.1) we get directly for the magnitude of the force F = |il × B| = 10 A · 0.1 m · sin 80◦ · 1 Vs/m2 = 0.98 V A s/m = 0.98 N. In electrical engineering theory, the other laws, which were initially discovered empirically and then later introduced in writing, can be derived from the following fundamental laws presented in complete form by Maxwell. To be independent of the shape or position of the area under observation, these laws are presented as differential equations. A current flowing from an observation point reduces the charge of the point. This law of conservation of charge can be given as a divergence equation ∇ ·J=−
∂ρ , ∂t
(1.2)
which is known as the continuity equation of the electric current. Maxwell’s actual equations are written in differential form as ∇ ×E = −
∂B , ∂t
∇ ×H = J+
∂D , ∂t
(1.3) (1.4)
∇ · D = ρ,
(1.5)
∇ · B = 0.
(1.6)
P1: OTA/XYZ P2: ABC c01 JWBK312-Pyrhonen
November 23, 2008
15:36
Printer Name: Yet to Come
Principal Laws and Methods in Electrical Machine Design
3
The curl relation (1.3) of an electric field is Faraday’s induction law that describes how a changing magnetic flux creates an electric field around it. The curl relation (1.4) for magnetic field strength describes the situation where a changing electric flux and current produce magnetic field strength around them. This is Amp`ere’s law. Amp`ere’s law also yields a law for conservation of charge (1.2) by a divergence Equation (1.4), since the divergence of the curl is identically zero. In some textbooks, the curl operation may also be expressed as ∇ × E = curl E = rot E. An electric flux always flows from a positive charge and passes to a negative charge. This can be expressed mathematically by the divergence Equation (1.5) of an electric flux. This law is also known as Gauss’s law for electric fields. Magnetic flux, however, is always a circulating flux with no starting or end point. This characteristic is described by the divergence Equation (1.6) of the magnetic flux density. This is Gauss’s law for magnetic fields. The divergence operation in some textbooks may also be expressed as ∇ · D = div D. Maxwell’s equations often prove useful in their integral form: Faraday’s induction law 0001 E · dl =
d dt
l
0002 B · dS = −
dΦ dt
(1.7)
S
states that the change of a magnetic flux Φ penetrating an open surface S is equal to a negative line integral of the electric field strength along the line l around the surface. Mathematically, an element of the surface S is expressed by a differential operator dS perpendicular to the surface. The contour line l of the surface is expressed by a differential vector dl parallel to the line. Faraday’s law together with Amp`ere’s law are extremely important in electrical machine design. At its simplest, the equation can be employed to determine the voltages induced in the windings of an electrical machine. The equation is also necessary for instance in the determination of losses caused by eddy currents in a magnetic circuit, and when determining the skin effect in copper. Figure 1.2 illustrates Faraday’s law. There is a flux Φ penetrating through a surface S, which is surrounded by the line l.
E
B Φ
dS
l
Figure 1.2 Illustration of Faraday’s induction law. A typical surface S, defined by a closed line l, is penetrated by a magnetic flux Φ with a density B. A change in flux density creates an electric current strength E. The circles illustrate the behaviour of E. dS is a vector perpendicular to the surface S
P1: OTA/XYZ P2: ABC c01 JWBK312-Pyrhonen
November 23, 2008
15:36
Printer Name: Yet to Come
4
Design of Rotating Electrical Machines
The arrows in the circles point the direction of the electric field strength E in the case where the flux density B inside the observed area is increasing. If we 0003 place a short-circuited metal wire around the flux, we will obtain an integrated voltage l E · dl in the wire, and consequently also an electric current. This current creates its own flux that will oppose the flux penetrating through the coil. If there are several turns N of winding (cf. Figure 1.2), the flux does not link all these turns ideally, but with a ratio of less than unity. Hence we may denote the effective turns of winding by kw N, (kw < 1). Equation (1.7) yields a formulation with an electromotive force e of a multi-turn winding. In electrical machines, the factor kw is known as the winding factor (see Chapter 2). This formulation is essential to electrical machines and is written as d e = −kw N dt
0002 B · dS = −kw N
dΨ dΦ =− . dt dt
(1.8)
S
Here, we introduce the flux linkage Ψ = kw NΦ = LI, one of the core concepts of electrical engineering. It may be noted that the inductance L describes the ability of a coil to produce flux linkage Ψ . Later, when calculating the inductance, the effective turns, the permeance Λ or the reluctance Rm of the magnetic circuit are needed (L = (kw N)2 Λ = (kw N)2 /Rm ).
Example 1.2: There are 100 turns in a coil having a cross-sectional area of 0.0001 m2 . There is an alternating peak flux density of 1 T linking the turns of the coil with a winding factor of kw = 0.9. Calculate the electromotive force induced in the coil when the flux density variation has a frequency of 100 Hz. Solution: Using Equation (1.8) we get dΨ dΦ d ˆ = −kw N = −kw N BS sin ωt dt dt dt 0004 0005 Vs d 100 1 2 · 0.0001 m2 sin · 2πt = −0.9 · 100 · dt m s
e=−
e = −90 · 2π V cos
200 200 πt = −565 V cos πt. s s
Hence, the peak value of √ the voltage is 565 V and the effective value of the voltage induced in the coil is 565 V/ 2 = 400 V. Amp`ere’s law involves a displacement current that can be given as the time derivative of the electric flux ψ. Amp`ere’s law 0002
0001 H · dl = l
S
d J · dS + dt
0002 D · dS = i (t) + S
dψe dt
(1.9)
P1: OTA/XYZ P2: ABC c01 JWBK312-Pyrhonen
November 23, 2008
15:36
Printer Name: Yet to Come
Principal Laws and Methods in Electrical Machine Design
5
B, H
l dS ψe = ∫
S 0
J
E ⋅ dS
i ψe = ∫
S 0
E ⋅ dS
Figure 1.3 Application of Amp`ere’s law in the surroundings of a current-carrying conductor. The line l defines a surface S, the vector dS being perpendicular to it
indicates that a current i(t) penetrating a surface S and including the change of electric flux has to be equal to the line integral of the magnetic flux H along the line l around the surface S. Figure 1.3 depicts an application of Amp`ere’s law. The term d dt
0002 D · dS =
dψe dt
S
in (1.9) is known as Maxwell’s displacement current, which ultimately links the electromagnetic phenomena together. The displacement current is Maxwell’s historical contribution to the theory of electromagnetism. The invention of displacement current helped him to explain the propagation of electromagnetic waves in a vacuum in the absence of charged particles or currents. Equation (1.9) is quite often presented in its static or quasi-static form, which yields 0002
0001 H · dl = l
J · dS =
0006
i (t) = Θ (t) .
(1.10)
S
The term ‘quasi-static’ indicates that the frequency f of the phenomenon in question is low enough to neglect Maxwell’s displacement current. The phenomena occurring in electrical machines meet the quasi-static requirement well, since, in practice, considerable displacement currents appear only at radio frequencies or at low frequencies in capacitors that are deliberately produced to take advantage of the displacement currents. The quasi-static form of Amp`ere’s law is a very important equation in electrical machine design. It is employed in determining the magnetic voltages of an electrical 0007 machine and the required current linkage. The instantaneous value of the current sum i (t) in Equation (1.10), that is the instantaneous value of current linkage Θ, can, if desired, be assumed to involve also the apparent current linkage of a permanent magnet ΘPM = Hc0005 h PM . Thus, the apparent current linkage of a permanent magnet depends on the calculated coercive force Hc0005 of the material and on the thickness hPM of the magnetic material.
P1: OTA/XYZ P2: ABC c01 JWBK312-Pyrhonen
November 23, 2008
15:36
Printer Name: Yet to Come
6
Design of Rotating Electrical Machines
The corresponding differential form of Amp`ere’s law (1.10) in a quasi-static state (dD/dt neglected) is written as ∇ × H = J.
(1.11)
The continuity Equation (1.2) for current density in a quasi-static state is written as ∇ · J = 0.
(1.12)
Gauss’s law for electric fields in integral form 0001
0002 D · dS =
S
ρV dV
(1.13)
V
indicates that a charge inside a closed surface S that surrounds a volume V creates an electric flux density D through the surface. Here V ρV dV = q (t) is the instantaneous net charge inside the closed surface S. Thus, we can see that in electric fields, there are both sources and drains. When considering the insulation of electrical machines, Equation (1.13) is required. However, in electrical machines, it is not uncommon that charge densities in a medium prove to be zero. In that case, Gauss’s law for electric fields is rewritten as 0001 D · dS = 0
or
∇ · D = 0 ⇒ ∇ · E = 0.
(1.14)
S
In uncharged areas, there are no sources or drains in the electric field either. Gauss’s law for magnetic fields in integral form 0001 B · dS = 0
(1.15)
S
states correspondingly that the sum of a magnetic flux penetrating a closed surface S is zero; in other words, the flux entering an object must also leave the object. This is an alternative way of expressing that there is no source for a magnetic flux. In electrical machines, this means for instance that the main flux encircles the magnetic circuit of the machine without a starting or end point. Similarly, all other flux loops in the machine are closed. Figure 1.4 illustrates the surfaces S employed in integral forms of Maxwell’s equations, and Figure 1.5, respectively, presents an application of Gauss’s law for a closed surface S. The permittivity, permeability and conductivity ε, µ and σ of the medium determine the dependence of the electric and magnetic flux densities and current density on the field strength. In certain cases, ε, µ and σ can be treated as simple constants; then the corresponding pair of quantities (D and E, B and H, or J and E) are parallel. Media of this kind are called isotropic, which means that ε, µ and σ have the same values in different directions. Otherwise, the media have different values of the quantities ε, µ and σ in different directions, and may therefore be treated as tensors; these media are defined as anisotropic. In practice, the
P1: OTA/XYZ P2: ABC c01 JWBK312-Pyrhonen
November 23, 2008
15:36
Printer Name: Yet to Come
Principal Laws and Methods in Electrical Machine Design
7
S
dS
dS
S
V
dl (a)
(b)
Figure 1.4 Surfaces for the integral forms of the equations for electric and magnetic fields. (a) An open surface S and its contour l, (b) a closed surface S, enclosing a volume V. dS is a differential surface vector that is everywhere normal to the surface
permeability in ferromagnetic materials is always a highly nonlinear function of the field strength H: µ = f (H). The general formulations for the equations of a medium can in principle be written as D = f (E), B = f (H),
(1.16) (1.17)
J = f (E).
(1.18)
J E
S dS V
Q
B
(a)
(b)
Figure 1.5 Illustration of Gauss’s law for (a) an electric field and (b) a magnetic field. The charge Q inside a closed object acts as a source and creates an electric flux with the field strength E. Correspondingly, a magnetic flux created by the current density J outside a closed surface S passes through the closed surface (penetrates into the sphere and then comes out). The magnetic field is thereby sourceless (div B = 0)
P1: OTA/XYZ P2: ABC c01 JWBK312-Pyrhonen
November 23, 2008
15:36
Printer Name: Yet to Come
8
Design of Rotating Electrical Machines
The specific forms for the equations have to be determined empirically for each medium in question. By applying permittivity ε [F/m], permeability µ [V s/A m] and conductivity σ [S/m], we can describe materials by the following equations: D = εE,
(1.19)
B = µH, J = σ E.
(1.20) (1.21)
The quantities describing the medium are not always simple constants. For instance, the permeability of ferromagnetic materials is strongly nonlinear. In anisotropic materials, the direction of flux density deviates from the field strength, and thus ε and µ can be tensors. In a vacuum the values are ε0 = 8.854 · 10−12 F/m, A s/V m and µ0 = 4π · 10−7 H/m, V s/A m.
Example 1.3: Calculate the electric field density D over an insulation layer 0.3 mm thick when the potential of the winding is 400 V and the magnetic circuit of the system is at earth potential. The relative permittivity of the insulation material is εr = 3. Solution: The electric field strength across the insulation is E = 400 V/0.3 mm = 133 kV/m. According to Equation (1.19), the electric field density is D = εE = εr ε0 E = 3 · 8.854 · 10−12 A s/V m · 133 kV/m = 3.54 µA s/m2 .
Example 1.4: Calculate the displacement current over the slot insulation of the previous example at 50 Hz when the insulation surface is 0.01 m2 . Solution: The electric field over the insulation is ψ e = DS = 0.0354 µA s. The time-dependent electric field over the slot insulation is ψe (t) = ψˆ e sin ωt = 0.0354 µA s sin 314t. Differentiating with respect to time gives dψe (t) = ωψˆ e cos ωt = 11 µA cos 314t. dt √ The effective current over the insulation is hence 11/ 2 = 7.86 µA. Here we see that the displacement current is insignificant from the viewpoint of the machine’s basic functionality. However, when a motor is supplied by a frequency converter and
P1: OTA/XYZ P2: ABC c01 JWBK312-Pyrhonen
November 23, 2008
15:36
Printer Name: Yet to Come
Principal Laws and Methods in Electrical Machine Design
9
the transistors create high frequencies, significant displacement currents may run across the insulation and bearing current problems, for instance, may occur.
1.2 Numerical Solution The basic design of an electrical machine, that is the dimensioning of the magnetic and electric circuits, is usually carried out by applying analytical equations. However, accurate performance of the machine is usually evaluated using different numerical methods. With these numerical methods, the effect of a single parameter on the dynamical performance of the machine can be effectively studied. Furthermore, some tests, which are not even feasible in laboratory circumstances, can be virtually performed. The most widely used numerical method is the finite element method (FEM), which can be used in the analysis of two- or three-dimensional electromagnetic field problems. The solution can be obtained for static, time-harmonic or transient problems. In the latter two cases, the electric circuit describing the power supply of the machine is coupled with the actual field solution. When applying FEM in the electromagnetic analysis of an electrical machine, special attention has to be paid to the relevance of the electromagnetic material data of the structural parts of the machine as well as to the construction of the finite element mesh. Because most of the magnetic energy is stored in the air gap of the machine and important torque calculation formulations are related to the air-gap field solution, the mesh has to be sufficiently dense in this area. The rule of thumb is that the air-gap mesh should be divided into three layers to achieve accurate results. In the transient analysis, that is in time-stepping solutions, the selection of the size of the time step is also important in order to include the effect of high-order time harmonics in the solution. A general method is to divide one time cycle into 400 steps, but the division could be even denser than this, in particular with highspeed machines. There are five common methods to calculate the torque from the FEM field solution. The solutions are (1) the Maxwell stress tensor method, (2) Arkkio’s method, (3) the method of magnetic coenergy differentiation, (4) Coulomb’s virtual work and (5) the magnetizing current method. The mathematical torque formulations related to these methods will shortly be discussed in Sections 1.4 and 1.5. The magnetic fields of electrical machines can often be treated as a two-dimensional case, and therefore it is quite simple to employ the magnetic vector potential in the numerical solution of the field. In many cases, however, the fields of the machine are clearly three dimensional, and therefore a two-dimensional solution is always an approximation. In the following, first, the full three-dimensional vector equations are applied. The magnetic vector potential A is given by B = ∇ × A;
(1.22)
Coulomb’s condition, required to define unambiguously the vector potential, is written as ∇ · A = 0.
(1.23)
P1: OTA/XYZ P2: ABC c01 JWBK312-Pyrhonen
November 23, 2008
15:36
Printer Name: Yet to Come
10
Design of Rotating Electrical Machines
The substitution of the definition for the magnetic vector potential in the induction law (1.3) yields ∇ × E = −∇ ×
∂ A. ∂t
(1.24)
Electric field strength can be expressed by the vector potential A and the scalar electric potential φ as E=−
∂A − ∇φ ∂t
(1.25)
where φ is the reduced electric scalar potential. Because ∇ × ∇φ ≡ 0, adding a scalar potential causes no problems with the induction law. The equation shows that the electric field strength vector consists of two parts, namely a rotational part induced by the time dependence of the magnetic field, and a nonrotational part created by electric charges and the polarization of dielectric materials. Current density depends on the electric field strength J = σ E = −σ
∂A − σ ∇φ. ∂t
(1.26)
Amp`ere’s law and the definition for vector potential yield 0005 1 ∇ × A = J. µ
(1.27)
0005 ∂A 1 ∇ ×A +σ + σ ∇φ = 0. µ ∂t
(1.28)
0004 ∇× Substituting (1.26) into (1.27) gives 0004 ∇×
The latter is valid in areas where eddy currents may be induced, whereas the former is valid in areas with source currents J = Js , such as winding currents, and areas without any current densities J = 0. In electrical machines, a two-dimensional solution is often the obvious one; in these cases, the numerical solution can be based on a single component of the vector potential A. The field solution (B, H) is found in an xy plane, whereas J, A and E involve only the z-component. The gradient ∇φ only has a z-component, since J and A are parallel to z, and (1.26) is valid. The reduced scalar potential is thus independent of x- and y-components. φ could be a linear function of the z-coordinate, since a two-dimensional field solution is independent of z. The assumption of two-dimensionality is not valid if there are potential differences caused by electric charges or by the polarization of insulators. For two-dimensional cases with eddy currents, the reduced scalar potential has to be set as φ = 0.
P1: OTA/XYZ P2: ABC c01 JWBK312-Pyrhonen
November 23, 2008
15:36
Printer Name: Yet to Come
Principal Laws and Methods in Electrical Machine Design
11
In a two-dimensional case, the previous equation is rewritten as 0004 −∇ ·
0005 ∂ Az 1 ∇ Az + σ = 0. µ ∂t
(1.29)
Outside eddy current areas, the following is valid: 0004 −∇ ·
1 ∇ Az µ
0005 = Jz .
(1.30)
The definition of vector potential yields the following components for flux density: Bx =
∂ Az , ∂y
By = −
∂ Az . ∂x
(1.31)
Hence, the vector potential remains constant in the direction of the flux density vector. Consequently, the iso-potential curves of the vector potential are flux lines. In the two-dimensional case, the following formulation can be obtained from the partial differential equation of the vector potential:
∂ −k ∂x
0004 0005 0004 0005
∂ Az ∂ ∂ Az ν + ν = kJ. ∂x ∂y ∂y
(1.32)
Here ν is the reluctivity of the material. This again is similar to the equation for a static electric field ∇ · (ν∇A) = −J.
(1.33)
Further, there are two types of boundary conditions. Dirichlet’s boundary condition indicates that a known potential, here the known vector potential A = constant,
(1.34)
can be achieved for a vector potential for instance on the outer surface of an electrical machine. The field is parallel to the contour of the surface. Similar to the outer surface of an electrical machine, also the centre line of the machine’s pole can form a symmetry plane. Neumann’s homogeneous boundary condition determined with the vector potential ν
∂A =0 ∂n
(1.35)
can be achieved when the field meets a contour perpendicularly. Here n is the normal unit vector of a plane. A contour of this kind is for instance part of a field confined to infinite permeability iron or the centre line of the pole clearance.
P1: OTA/XYZ P2: ABC c01 JWBK312-Pyrhonen
November 23, 2008
15:36
Printer Name: Yet to Come
12
Design of Rotating Electrical Machines
l
Dirichlet
Φ12
A is constant, corresponds to a flux line
Neumann ν
∂A ∂n
=0
y A1,A
z
2
x A is constant, corresponds to Dirichlet´s boundary condition
Figure 1.6 Left, a two-dimensional field and its boundary conditions for a salient-pole synchronous machine are illustrated. Here, the constant value of the vector potential A (e.g. the machine’s outer contour) is taken as Dirichlet’s boundary condition, and the zero value of the derivative of the vector potential with respect to normal is taken as Neumann’s boundary condition. In the case of magnetic scalar potential, the boundary conditions with respect to potential would take opposite positions. Because of symmetry, the zero value of the normal derivative of the vector potential corresponds to the constant magnetic potential V m , which in this case would be a known potential and thus Dirichlet’s boundary condition. Right, a vector-potential-based field solution of a two-pole asynchronous machine assuming a two-dimensional field is presented
The magnetic flux penetrating a surface is easy to calculate with the vector potential. Stoke’s theorem yields for the flux (∇ × A) · dS =
B · dS = S
0001
0002
0002 Φ=
S
A · dl.
(1.36)
l
This is an integral around the contour l of the surface S. These phenomena are illustrated with Figure 1.6. In the two-dimensional case of the illustration, the end faces’ share of the integral is zero, and the vector potential along the axis is constant. Consequently, for a machine of length l we obtain a flux Φ12 = l (A1 − A2 ) .
(1.37)
This means that the flux Φ 12 is the flux between vector equipotential lines A1 and A2 .
1.3 The Most Common Principles Applied to Analytic Calculation The design of an electrical machine involves the quantitative determination of the magnetic flux of the machine. Usually, phenomena in a single pole are analysed. In the design of a magnetic circuit, the precise dimensions for individual parts are determined, the required current linkage for the magnetic circuit and also the required magnetizing current are calculated, and the magnitude of losses occurring in the magnetic circuit are estimated.
P1: OTA/XYZ P2: ABC c01 JWBK312-Pyrhonen
November 23, 2008
15:36
Printer Name: Yet to Come
Principal Laws and Methods in Electrical Machine Design
13
If the machine is excited with permanent magnets, the permanent magnet materials have to be selected and the main dimensions of the parts manufactured from these materials have to be determined. Generally, when calculating the magnetizing current for a rotating machine, the machine is assumed to run at no load: that is, there is a constant current flowing in the magnetizing winding. The effects of load currents are analysed later. The design of a magnetic circuit of an electrical machine is based on Amp`ere’s law (1.4) and (1.8). The line integral calculated around the 0007magnetic circuit of an electrical machine, that is the sum of magnetic potential differences Um,i , is equal to the surface integral of the current densities over the surface S of the magnetic circuit. (The surface S here indicates the surface penetrated by the main flux.) In practice, in electrical machines, the current usually flows in the windings, the surface integral of the current density corresponding to the sum of these currents (flowing in the windings), that is the current linkage Θ. Now Amp`ere’s law can be rewritten as Um,tot =
0006
0001 Um,i =
0001 H · dl =
l
J · dS = Θ =
0006
i.
(1.38)
S
The sum of magnetic potential differences U m around the complete magnetic circuit is equal to the sum of the magnetizing currents in the circuit, that is the current linkage Θ. In 0007 simple applications, the current sum may be given as i = kw N i, where kw N is the effective number of turns and i the current flowing in them. In addition to the windings, this current linkage may also involve the effect of the permanent magnets. In practice, when calculating the magnetic voltage, the machine is divided into its components, and the magnetic voltage U m between points a and b is determined as 0002
b
Um,ab =
H · dl.
(1.39)
a
In electrical machines, the field strength is often in the direction of the component in question, and thus Equation (1.39) can simply be rewritten as 0002 Um,ab =
b
H dl.
(1.40)
a
Further, if the field strength is constant in the area under observation, we get Um,ab = Hl.
(1.41)
In the determination of the required current linkage Θ of a machine’s magnetizing winding, the simplest possible integration path is selected in the calculation of the magnetic voltages. This means selecting a path that encloses the magnetizing winding. This path is defined as the main integration path and it is also called the main flux path of the machine (see Chapter 3). In salient-pole machines, the main integration path crosses the air gap in the middle of the pole shoes.
P1: OTA/XYZ P2: ABC c01 JWBK312-Pyrhonen
November 23, 2008
15:36
14
Printer Name: Yet to Come
Design of Rotating Electrical Machines
Example 1.5: Consider a C-core inductor with a 1 mm air gap. In the air gap, the flux density is 1 T. The ferromagnetic circuit length is 0.2 m and the relative permeability of the core material at 1 T is µr = 3500. Calculate the field strengths in the air gap and the core, and also the magnetizing current needed. How many turns N of wire carrying a 10 A direct current are needed to magnetize the choke to 1 T? Fringing in the air gap is neglected and the winding factor is assumed to be kw = 1. Solution: According to (1.20), the magnetic field strength in the air gap is Hδ = Bδ /µ0 = 1 V s/m2 / 4π · 10−7 V s/A m = 795 kA/m. The corresponding magnetic field strength in the core is
HFe = BFe (µr µ0 ) = 1 V s/m2 3500 · 4π · 10−7 V s/A m = 227 A/m. The magnetic voltage in the air gap (neglecting fringing) is Um,δ = Hδ δ = 795 kA/m · 0.001 m = 795 A. The magnetic voltage in the core is Um,Fe = HFelFe = 227 A/m · 0.2 m = 45 A. The magnetomotive force (mmf) of the magnetic circuit is 0001 H · dl = Um,tot =
0006
Um,i = Um,δ + Um,Fe = 795 A + 45 A = 840 A.
l
The current linkage Θ of the choke has to be of equal magnitude with the mmf U m,tot , Θ=
0006
i = kw N i = Um,tot .
We get N=
Um,tot 840 A = = 84 turns. kw i 1 · 10 A
In machine design, not only does the main flux have to be analysed, but also all the leakage fluxes of the machine have to be taken into account. In the determination of the no-load curve of an electrical machine, the magnetic voltages of the magnetic circuit have to be calculated with several different flux densities. In practice, for the exact definition of the magnetizing curve, a computation program that solves the different magnetizing states of the machine is required. According to their magnetic circuits, electrical machines can be divided into two main categories: in salient-pole machines, the field windings are concentrated pole windings, whereas in
P1: OTA/XYZ P2: ABC c01 JWBK312-Pyrhonen
November 23, 2008
15:36
Printer Name: Yet to Come
Principal Laws and Methods in Electrical Machine Design
15
nonsalient-pole machines, the magnetizing windings are spatially distributed in the machine. The main integration path of a salient-pole machine consists for instance of the following components: a rotor yoke (yr), pole body (p2), pole shoe (p1), air gap (δ), teeth (d) and armature yoke (ya). For this kind of salient-pole machine or DC machine, the total magnetic voltage of the main integration path therefore consists of the following components Um,tot = Um,yr + 2Um,p2 + 2Um,p1 + 2Um,δ + 2Um,d + Um,ya .
(1.42)
In a nonsalient-pole synchronous machine and induction motor, the magnetizing winding is contained in slots. Therefore both stator (s) and rotor (r) have teeth areas (d) Um,tot = Um,yr + 2Um,dr + 2Um,δ + 2Um,ds + Um,ys .
(1.43)
With Equations (1.42) and (1.43), we must bear in mind that the main flux has to flow twice across the teeth area (or pole arc and pole shoe) and air gap. In a switched reluctance (SR) machine, where both the stator and rotor have salient poles (double saliency), the following equation is valid: Um,tot = Um,yr + 2Um,rp2 + 2Um,rp1 (α) + 2Um,δ (α) + 2Um,sp1 (α) + 2Um,sp2 + Um,ys . (1.44) This equation proves difficult to employ, because the shape of the air gap in an SR machine varies constantly when the machine rotates. Therefore the magnetic voltage of both the rotor and stator pole shoes depends on the position of the rotor α. The magnetic potential differences of the most common rotating electrical machines can be presented by equations similar to Equations (1.42)–(1.44). In electrical machines constructed of ferromagnetic materials, only the air gap can be considered magnetically linear. All ferromagnetic materials are both nonlinear and often anisotropic. In particular, the permeability of oriented electrical steel sheets varies in different directions, being highest in the rolling direction and lowest in the perpendicular direction. This leads to a situation where the permeability of the material is, strictly speaking, a tensor. The flux is a surface integral of the flux density. Commonly, in electrical machine design, the flux density is assumed to be perpendicular to the surface to be analysed. Since the area of a perpendicular surface S is S, we can rewrite the equation simply as 0002 Φ=
BdS.
(1.45)
Further, if the flux density B is also constant, we obtain Φ = BS.
(1.46)
Using the equations above, it is possible to construct a magnetizing curve for each part of the machine Φab = f Um,ab , B = f Um,ab .
(1.47)
P1: OTA/XYZ P2: ABC c01 JWBK312-Pyrhonen
November 23, 2008
15:36
Printer Name: Yet to Come
16
Design of Rotating Electrical Machines
In the air gap, the permeability is constant µ = µ0 . Thus, we can employ magnetic conductivity, that is permeance Λ, which leads us to Φab = Λab Um,ab .
(1.48)
If the air gap field is homogeneous, we get Φab = Λab Um,ab =
µ0 S Um,ab . δ
(1.49)
Equations (1.38) and (1.42)–(1.44) yield the magnetizing curve for a machine Φδ = f (Θ),
Bδ = f (Θ),
(1.50)
where the term Φ δ is the air-gap flux. The absolute value for flux density Bδ is the maximum flux density in the air gap in the middle of the pole shoe, when slotting is neglected. The magnetizing curve of the machine is determined in the order Φ δ , Bδ → B → H → Um → Θ by always selecting a different value for the air-gap flux Φ δ , or for its density, and by calculating the magnetic voltages in the machine and the required current linkage Θ. With the current linkage, it is possible to determine the current I flowing in the windings. Correspondingly, with the air-gap flux and the winding, we can determine the electromotive force (emf) E induced in the windings. Now we can finally plot the actual no-load curve of the machine (Figure 1.7) E = f (I ).
E
(1.51)
Ψ
0
0 0
Im
0
Im
Figure 1.7 Typical no-load curve for an electrical machine expressed by the electromotive force E or the flux linkage Ψ as a function of the magnetizing current I m . The E curve as a function of I m has been measured when the machine is running at no load at a constant speed. In principle, the curve resembles a BH curve of the ferromagnetic material used in the machine. The slope of the no-load curve depends on the BH curve of the material, the (geometrical) dimensions and particularly on the length of the air gap
P1: OTA/XYZ P2: ABC c01 JWBK312-Pyrhonen
November 23, 2008
15:36
Printer Name: Yet to Come
Principal Laws and Methods in Electrical Machine Design
17
Φ3
S3
S2
Φ2
S1
Φ1
Figure 1.8 Laminated tooth and a coarse flux tube running in a lamination. The cross-sections of the tube are presented with surface vectors 0010Si . There is a flux 0010Φ flowing in the tube. The flux tubes follow the flux lines in the magnetic circuit of the electrical machine. Most of the tubes constitute the main magnetic circuit, but a part of the flux tubes forms leakage flux paths. If a two-dimensional field solution is assumed, two-dimensional flux diagrams as shown in Figure 1.6 may replace the flux tube approach
1.3.1 Flux Line Diagrams Let us consider areas with an absence of currents. A spatial magnetic flux can be assumed to flow in a flux tube. A flux tube can be analysed as a tube of a quadratic cross-section 0010S. The flux does not flow through the walls of the tube, and hence B · dS = 0 is valid for the walls. As depicted in Figure 1.8, we can see that the corners of the flux tube form the flux lines. When calculating a surface integral along a closed surface surrounding the surface of a flux tube, Gauss’s law (1.15) yields 0001 B · dS = 0.
(1.52)
Since there is no flux through the side walls of the tube in Figure 1.8, Equation (1.52) can be rewritten as 0001
0001 B1 · d0010S1 =
0001 B2 · d0010S2 =
B3 · d0010S3 ,
(1.53)
P1: OTA/XYZ P2: ABC c01 JWBK312-Pyrhonen
November 23, 2008
15:36
Printer Name: Yet to Come
18
Design of Rotating Electrical Machines
indicating that the flux of the flux tube is constant 0010Φ1 = 0010Φ2 = 0010Φ3 = 0010Φ.
(1.54)
A magnetic equipotential surface is a surface with a certain magnetic scalar potential V m . When travelling along any route between two points a and b on this surface, we must get 0002b H · dl = Um,ab = Vma − Vmb = 0.
(1.55)
a
When observing a differential route, this is valid only when H · dl = 0. For isotropic materials, the same result can be expressed as B · dl = 0. In other words, the equipotential surfaces are perpendicular to the lines of flux. If we select an adequately small area 0010S of the surface S, we are able to calculate the flux 0010Φ = B0010S.
(1.56)
The magnetic potential difference between two equipotential surfaces that are close enough to each other (H is constant along the integration path l) is written as 0010Um = Hl.
(1.57)
The above equations give the permeance Λ of the cross-section of the flux tube Λ=
dS 0010Φ B · dS =µ . = 0010Um Hl l
(1.58)
The flux line diagram (Figure 1.9) comprises selected flux and potential lines. The selected flux lines confine flux tubes, which all have an equal flux 0010Φ. The magnetic voltage between the chosen potential lines is always the same, 0010U m . Thus, the magnetic conductivity of each section of the flux tube is always the same, and the ratio of the distance of flux lines x to the distance of potential lines y is always the same. If we set x = 1, y
(1.59)
the field diagram forms, according to Figure 1.9, a grid of quadratic elements. In a homogeneous field, the field strength H is constant at every point of the field. According to Equations (1.57) and (1.59), the distance of all potential and flux lines is thus always the same. In that case, the flux diagram comprises squares of equal size. When constructing a two-dimensional orthogonal field diagram, for instance for the air gap of an electrical machine, certain boundary conditions have to be known to be able to draw the diagram. These boundary conditions are often solved based on symmetry, or also because the potential of a certain potential surface of the flux tube in Figure 1.8 is already known. For instance, if the stator and rotor length of the machine is l, the area of the flux tube can,
P1: OTA/XYZ P2: ABC c01 JWBK312-Pyrhonen
November 23, 2008
15:36
Printer Name: Yet to Come
Principal Laws and Methods in Electrical Machine Design
19
Φ
S1 z
Um
x
ines
l flux
y
Vm
2
Vm
1
potential line
S2
Figure 1.9 Flux lines and potential lines in a three-dimensional area with a flux flowing across an area where the length dimension z is constant. In principle, the diagram is thus two dimensional. Such a diagram is called an orthogonal field diagram
without significant error, be written as dS = l dx. The interface of the iron and air is now analysed according to Figure 1.10a. We get dΦ y = B yδldx − B yFeldx = 0 ⇒ B yδ = B yFe .
(1.60)
Here, Byδ and ByFe are the flux densities of air in the y-direction and of iron in the y-direction.
Φ
y By
y
Bx air air gap
µ0
dy δ
By Bx iron, e.g. rotor surface z
µ0 l
dx Φy
x
x z
µFe (a)
iron µFe (b)
Figure 1.10 (a) Interface of air δ and iron Fe. The x-axis is tangential to the rotor surface. (b) Flux travelling on iron surface
P1: OTA/XYZ P2: ABC c01 JWBK312-Pyrhonen
November 23, 2008
15:36
Printer Name: Yet to Come
20
Design of Rotating Electrical Machines
In Figure 1.10a, the field strength has to be continuous in the x-direction on the iron–air interface. If we consider the interface in the x-direction and, based on Amp`ere’s law, assume a section dx of the surface has no current, we get Hxδ dx − HxFe dx = 0,
(1.61)
BxFe . µFe
(1.62)
and thus
Hxδ = HxFe =
By assuming that the permeability of iron is infinite, µFe → ∞, we get HxFe = Hxδ = 0 and thereby also Bxδ = µ0 Hxδ = 0. Hence, if we set µFe → ∞, the flux lines leave the ferromagnetic material perpendicularly into the air. Simultaneously, the interface of iron and air forms an equipotential surface. If the iron is not saturated, its permeability is very high, and the flux lines can be assumed to leave the iron almost perpendicularly in currentless areas. In saturating areas, the interface of the iron and air cannot strictly be considered an equipotential surface. The magnetic flux and the electric flux refract on the interface. In Figure 1.10b, the flux flows in the iron in the direction of the interface. If the iron is not saturated (µFe → ∞) we can set Bx ≈ 0. Now, there is no flux passing from the iron into air. When the iron is about to become saturated (µFe → 1), a significant magnetic voltage occurs in the iron. Now, the air adjacent to the iron becomes an appealing route for the flux, and part of the flux passes into the air. This is the case for instance when the teeth of electrical machines saturate: a part of the flux flows across the slots of the machine, even though the permeability of the materials in the slot is in practice equal to the permeability of a vacuum. The lines of symmetry in flux diagrams are either potential or field lines. When drawing a flux diagram, we have to know if the lines of symmetry are flux or potential lines. Figure 1.11 is an example of an orthogonal field diagram, in which the line of symmetry forms a potential line; this could depict for instance the air gap between the contour of an magnetizing pole of a DC machine and the rotor. The solution of an orthogonal field diagram by drawing is best started at those parts of the geometry where the field is as homogeneous as possible. For instance, in the case of Figure 1.11, we start from the point where the air gap is at its narrowest. Now, the surface of the magnetizing pole and the rotor surface that is assumed to be smooth form the potential lines together with the surface between the poles. First, the potential lines are plotted at equal distances and, next, the flux lines are drawn perpendicularly to potential lines so that the area under observation forms a grid of quadratic elements. The length of the machine being l, each flux tube created this way carries a flux of 0010Φ. With the field diagram, it is possible to solve various magnetic parameters of the area under observation. If nΦ is the number (not necessarily an integer) of contiguous flux tubes carrying a flux 0010Φ, and 0010U m is the magnetic voltage between the sections of a flux tube (nU sections in sequence), the permeance of the entire air gap Λδ assuming that 0010b = 0010δ can be
P1: OTA/XYZ P2: ABC c01 JWBK312-Pyrhonen
November 23, 2008
15:36
Printer Name: Yet to Come
Principal Laws and Methods in Electrical Machine Design
δ
Um
symmetry line in the middle of pole
symmetry line between poles
Φ
21
H0, B0
DC machine stator pole
Φ
potential line
δ0 δ U m 0
b 23
potential line
20
15
10
DC machine rotor surface
−τp/2
5
b0
1
0
x
pole pitch
Figure 1.11 Drawing an orthogonal field diagram in an air gap of a DC machine in the edge zone of a pole shoe. Here, a differential equation for the magnetic scalar potential is solved by drawing. Dirichlet’s boundary conditions for magnetic scalar potentials created on the surfaces of the pole shoe and the rotor and on the symmetry plane between the pole shoes. The centre line of the pole shoe is set at the origin of the coordinate system. At the origin, the element is dimensioned as 0010δ 0 , 0010b0 . The 0010δ and 0010b in different parts of the diagram have different sizes, but the 0010Φ remains the same in all flux tubes. The pole pitch is τ p . There are about 23.5 flux tubes from the pole surface to the rotor surface in the figure
written as 0010Um n Φ 0010blµ0 Φ n Φ 0010Φ 0010δ = n Φ µ l. Λδ = = = 0 Umδ n U 0010Um n U 0010Um nU
(1.63)
The magnetic field strength in the enlarged element of Figure 1.11 is H=
0010Um , 0010δ
(1.64)
and correspondingly the magnetic flux density B = µ0
0010Φ 0010Um = . 0010δ 0010bl
(1.65)
With Equation (1.56), it is also possible to determine point by point the distribution of flux density on a potential line; in other words, on the surface of the armature or the magnetizing pole. With the notation in Figure 1.11, we get 0010Φ0 = B0 0010b0l = 0010Φ(x) = B(x)0010b(x)l.
(1.66)
In the middle of the pole, where the air-gap flux is homogeneous, the flux density is B0 = µ0 H0 = µ0
0010Um Um,δ = µ0 . 0010δ0 δ0
(1.67)
P1: OTA/XYZ P2: ABC c01 JWBK312-Pyrhonen
November 23, 2008
15:36
22
Printer Name: Yet to Come
Design of Rotating Electrical Machines
Thus, the magnitude of flux density as a function of the x-coordinate is B(x) =
0010b0 Um,δ 0010b0 B0 = µ0 . 0010b(x) 0010b(x) δ0
(1.68)
Example 1.6: What is the permeance of the main flux in Figure 1.11 when the air gap δ = 0.01 m and the stator stack length is l = 0.1 m? How much flux is created with Θf = 1000 A? Solution: In the centre of the pole, the orthogonal flux diagram is uniform and we see that 0010δ 0 and 0010b0 have the same size; 0010δ 0 = 0010b0 = 2 mm. The permeance of the flux tube in the centre of the pole is Λ0 = µ0
0010b0l 0.02 m · 0.1 m Vs = µ0 = 4π · 10−8 . 0010δ0 0.02 m A
As we can see in Figure 1.11, about 23.5 flux tubes travel from half of the stator pole to the rotor surface. Each of these flux tubes transmits the same amount of flux, and hence the permeance of the whole pole seen by the main flux is Λ = 2 · 23.5 · Λ0 = 47 · Λ0 = 47 · 4π · 10−8
µV s Vs = 5.9 . A A
If we have Θf = 1000 A current linkage magnetizing the air gap, we get the flux Φ = ΛΘf = 5.9
µV s · 1000 A = 5.9 mV s. A
1.3.2 Flux Diagrams for Current-Carrying Areas Let us first consider a situation in which an equivalent linear current density A [A/m] covers the area under observation. In principle, the linear current density corresponds to the surface current Js = n × H0 induced in a conducting medium by an alternating field strength H0 outside the surface. The surface normal unit vector is denoted by n. In an electrical machine with windings, the ‘artificial surface current’, that is the local value of the linear current density A, may for instance be calculated as a current sum flowing in a slot divided by the slot pitch. Equivalent linear current density can be employed in approximation, because the currents flowing in the windings of electrical machines are usually situated close to the air gap, and the current linkages created by the currents excite mainly the air gaps. Thus, we can set µ = µ0 in the observed area of equivalent linear current density. The utilization of equivalent linear current density simplifies the manual calculation of the machine by idealizing the potential surfaces, and does not have a crucial impact on the field diagram in the areas outside the area of linear current density. Figure 1.12 illustrates an equivalent linear current density. The value for equivalent linear current density A is expressed per unit length in the direction of observation. The linear current density A corresponds to the tangential magnetic field
P1: OTA/XYZ P2: ABC c01 JWBK312-Pyrhonen
November 23, 2008
15:36
Printer Name: Yet to Come
Principal Laws and Methods in Electrical Machine Design
23
dy
H yFe
dΘ µ0
µFe
linear current density A
symmetry line, Neumann's condition
Hy
linear current density
symmetry line, Neumann's condition
y
pole surface Dirichlet's condition
x
current flowing
rotor surface, Dirichlet's boundary condition (b)
(a)
Figure 1.12 (a) General representation of linear current density A [A/m] and (b) its application to the field diagram of a magnetizing pole of a DC machine. It is important to note that in the area of the pole body, the potential lines now pass from air to iron. Dirichlet’s boundary conditions indicate here a known equiscalar potential surface
strength H yδ . Assuming the permeability of iron to be infinite, Amp`ere’s law yields for the element dy of Figure 1.12a 0001 H · dl = dΘ = Hyair dy − HyFe dy = Ady.
(1.69)
Further, this gives us Hyair = A
and
B yair = µ0 A.
(1.70)
Equation (1.70) indicates that in the case of Figure 1.12 we have a tangential flux density on the pole body surface. The tangential flux density makes the flux lines travel inclined to the pole body surface and not perpendicular to it as in currentless areas. If we assume that the phenomenon is observed on the stator inner surface or on the rotor outer surface, the x-components may be regarded as tangential components and the y-components as normal components. In the air gap δ, there is a tangential field strength Hxδ along the x-component, and a corresponding component of flux density Bxδ created by the linear current density A. This is essential when considering the force density, the tangential stress σ Ftan , that generates torque (Maxwell stresses will be discussed later). On iron surfaces with linear current density, the flux lines no longer pass perpendicularly from the iron to the air gap, as Figure 1.12 depicting the field diagram of a DC machine’s magnetizing pole also illustrates. The influence of a magnetizing winding on the pole body is illustrated with the linear current density. Since the magnetizing winding is evenly distributed over the length of the pole body (the linear current density being constant), it can be seen that the potential changes linearly in the area of linear current density in the direction of the height of the pole.
P1: OTA/XYZ P2: ABC c01 JWBK312-Pyrhonen
November 23, 2008
15:36
Printer Name: Yet to Come
24
Design of Rotating Electrical Machines
Vm3 rotor
Vm4 µFe
leakage
Vm2
flux
H=0 Ha
S
Hb Ha
H=0
∫ H ⋅ dl ≈ Hbb+0–Hab+0
S
c S
Vm2 b
b h
d
o
Hb
a
= (Hb − Ha)b = Um ≈ SJ = Vm3 −Vm2
p
e air ga
cross th
ing a ne flow
Vm2
x li
main flu
stator Vm0
µFe Vm1
Figure 1.13 Current-carrying conductor in a slot and its field diagram. The illustration on the left demonstrates the closed line integral around the surface 0010S; also some flux lines in the iron are plotted. Note that the flux lines travelling across the slot depict leakage flux
As evidence of this we can see that in Figure 1.12 the potential lines starting in the air gap enter the area of linear current density at even distances. In areas with current densities J, the potential lines become gradient lines. This can be seen in Figure 1.13 at points a, b and c. We could assume that the figure illustrates for instance a nonsalient-pole synchronous machine field winding bar carrying a DC density. The magnetic potential difference between V m4 and V m0 equals the slot current. The gradient lines meet the slot leakage flux lines orthogonally, which means that H · dl = 0 along a gradient line. In the figure, we calculate a closed line integral around the area 0010S of the surface S 0002
0001 H · dl = Vm3 − Vm2 =
0010S
J · dS,
(1.71)
where we can see that when the current density J and the difference of magnetic potentials 0010U m are constant, the area 0010S of the surface S also has to be constant. In other words, the selected gradient lines confine areas of equal size from the surface S with a constant current density. The gradient lines meet at a single point d, which is called an indifference point. If the current-carrying area is confined by an area with infinite permeability, the border line is a potential line and the indifference point is located on this border line. If the permeability of iron is not infinite, then d is located in the current-carrying area, as in Figure 1.13. If inside a current-carrying area the line integral is defined for instance around the area 0010S, we can see that the closer to the point d we get, the smaller become the distances between the gradient
P1: OTA/XYZ P2: ABC c01 JWBK312-Pyrhonen
November 23, 2008
15:36
Printer Name: Yet to Come
Principal Laws and Methods in Electrical Machine Design
25
lines. In order to maintain the same current sum in the observed areas, the heights of the areas 0010S have to be changed. Outside the current-carrying area, the following holds: 0010Φ = Λ0010Um = µ0l
h b
0002 J · dS.
(1.72)
S
Inside the area under observation, when a closed line integral according to Equation (1.71) is written only for the area 0010S (<S), the flux of a flux tube in a current-carrying area becomes 0010Φ 0005 = µ0l
0004 00050005 0002 h J · dS b 0010S
(1.73)
and thus, in that case, if (h/b)0005 = (h/b), then in fact 0010Φ 0005 < 0010Φ. If the current density J in the current-carrying area is constant, 0010Φ 0005 = 0010Φ0010S/S is valid. When crossing the boundary between a current-carrying slot and currentless iron, the flux of the flux tube cannot change. Therefore, the dimensions of the line grid have to be altered. When J is constant and 0010Φ 0005 = 0010Φ, Equations (1.72) and (1.73) yield for the dimensions in the current-carrying area 0004 00050005 h Sh = . b 0010Sb
(1.74)
This means that near the indifference point d the ratio (h/b) increases. An orthogonal field diagram can be drawn for a current-carrying area by correcting the equivalent linear current density by iterating the created diagram. For a current-carrying area, gradient lines are extended from potential lines up to the indifference point. Now, bearing in mind that the gradient lines have to divide the current-carrying area into sections of equal size, next the orthogonal flux lines are plotted by simultaneously paying attention to changing dimensions. The diagram is altered iteratively until Equation (1.74) is valid to the required accuracy.
1.4 Application of the Principle of Virtual Work in the Determination of Force and Torque When investigating electrical equipment, the magnetic circuit of which changes form during operation, the easiest method is to apply the principle of virtual work in the estimation of force and torque. Examples of this kind of equipment are double-salient-pole reluctant machines, various relays and so on. Faraday’s induction law presents the voltage induced in the winding, which creates a current that tends to resist the changes in flux. The voltage equation for the winding is written as u = Ri +
dΨ d = Ri + Li, dt dt
(1.75)
where u is the voltage connected to the coil terminals, R is the resistance of the winding and Ψ is the coil flux linkage, and L the self-inductance of the coil consisting of its magnetizing inductance and leakage inductance: L = Ψ /i = NΦ/i = N 2 Λ = N 2 /Rm (see also Section 1.6).
P1: OTA/XYZ P2: ABC c01 JWBK312-Pyrhonen
November 23, 2008
15:36
Printer Name: Yet to Come
26
Design of Rotating Electrical Machines
If the number of turns in the winding is N and the flux is Φ, Equation (1.75) can be rewritten as u = Ri + N
dΦ . dt
(1.76)
The required power in the winding is written correspondingly as ui = Ri 2 + N i
dΦ , dt
(1.77)
and the energy dW = P dt = Ri 2 dt + N i dΦ.
(1.78)
The latter energy component Ni dΦ is reversible, whereas Ri2 dt turns into heat. Energy cannot be created or destroyed, but may only be converted to different forms. In isolated systems, the limits of the energy balance can be defined unambiguously, which simplifies the energy analysis. The net energy input is equal to the energy stored in the system. This result, the first law of thermodynamics, is applied to electromechanical systems, where electrical energy is stored mainly in magnetic fields. In these systems, the energy transfer can be represented by the equation dWel = dWmec + dWΦ + dWR
(1.79)
where dW el is the differential electrical energy input, dW mec is the differential mechanical energy output, dWΦ is the differential change of magnetic stored energy, dW R is the differential energy loss. Here the energy input from the electric supply is written equal to the mechanical energy together with the stored magnetic field energy and heat loss. Electrical and mechanical energy have positive values in motoring action and negative values in generator action. In a magnetic system without losses, the change of electrical energy input is equal to the sum of the change of work done by the system and the change of stored magnetic field energy dWel = dWmec + dWΦ ,
(1.80)
dWel = ei dt.
(1.81)
In the above, e is the instantaneous value of the induced voltage, created by changes in the energy in the magnetic circuit. Because of this electromotive force, the external electric circuit converts power into mechanical power by utilizing the magnetic field. This law of energy conversion combines a reaction and a counter-reaction in an electrical and mechanical
P1: OTA/XYZ P2: ABC c01 JWBK312-Pyrhonen
November 23, 2008
15:36
Printer Name: Yet to Come
Principal Laws and Methods in Electrical Machine Design
27
x
FΦ R
F
i
Ψ, e
u
N turns
Φ
Figure 1.14 Electromagnetic relay connected to an external voltage source u. The mass of a moving yoke is neglected and the resistance of the winding is assumed to be concentrated in the external resistor R. There are N turns in the winding and a flux Φ flowing in the magnetic circuit; a flux linkage Ψ ≈ NΦ is produced in the winding. The negative time derivative of the flux linkage is an emf, e. The force F pulls the yoke open. The force is produced by a mechanical source. A magnetic force FΦ tries to close the air gap
system. The combination of Equations (1.80) and (1.81) yields dWel = ei dt =
dΨ i dt = i dΨ = dWmec + dWΦ . dt
(1.82)
Equation (1.82) lays a foundation for the energy conversion principle. Next, its utilization in the analysis of electromagnetic energy converters is discussed. As is known, a magnetic circuit (Figure 1.14) can be described by an inductance L determined from the number of turns of the winding, the geometry of the magnetic circuit and the permeability of the magnetic material. In electromagnetic energy converters, there are air gaps that separate the moving magnetic circuit parts from each other. In most cases – because of the high permeability of iron parts – the reluctance Rm of the magnetic circuit consists mainly of the reluctances of the air gaps. Thus, most of the energy is stored in the air gap. The wider the air gap, the more energy can be stored. For instance, in induction motors this can be seen from the fact that the wider is the gap, the higher is the magnetizing current needed. According to Faraday’s induction law, Equation (1.82) yields dWel = i dΨ.
(1.83)
The computation is simplified by neglecting for instance the magnetic nonlinearity and iron losses. The inductance of the device now depends only on the geometry and, in our example, on the distance x creating an air gap in the magnetic circuit. The flux linkage is thus a product
P1: OTA/XYZ P2: ABC c01 JWBK312-Pyrhonen
November 23, 2008
15:36
Printer Name: Yet to Come
28
Design of Rotating Electrical Machines
of the varying inductance and the current Ψ = L(x)i.
(1.84)
dWmec = FΦ dx.
(1.85)
A magnetic force FΦ is determined as
From Equations (1.83) and (1.85), we may rewrite Equation (1.80) as dWΦ = i dΨ − FΦ dx.
(1.86)
Since it is assumed that there are no losses in the magnetic energy storage, dWΦ is determined from the values of Ψ and x. dWΦ is independent of the integration path A or B, and the energy equation can be written as 0002
0002 WΦ (Ψ0 , x0 ) =
dWΦ + path A
dWΦ .
(1.87)
path B
With no displacement allowed (dx = 0), Equations (1.86) now (1.87) yield 0002Ψ WΦ (Ψ, x0 ) =
i (Ψ, x0 )dΨ.
(1.88)
0
In a linear system, Ψ is proportional to current i, as in Equations (1.84) and (1.88). We therefore obtain 0002Ψ WΦ (Ψ, x0 ) =
0002Ψ i (Ψ, x0 )dΨ =
0
1 Ψ2 1 Ψ dΨ = = L (x0 ) i 2 . L (x0 ) 2 L (x0 ) 2
(1.89)
0
The magnetic field energy can also be represented by the energy density wΦ = WΦ /V = B H/2 [J/m3 ] in a magnetic field integrated over the volume V of the magnetic field. This gives 0002 WΦ =
1 (H · B) dV . 2
(1.90)
V
Assuming the permeability of the magnetic medium constant and substituting B = µH gives 0002 WΦ = V
1 B2 dV . 2 µ
(1.91)
P1: OTA/XYZ P2: ABC c01 JWBK312-Pyrhonen
November 23, 2008
15:36
Printer Name: Yet to Come
Principal Laws and Methods in Electrical Machine Design
29
This yields the relation between the stored energy in a magnetic circuit and the electrical and mechanical energy in a system with a lossless magnetic energy storage. The equation for differential magnetic energy is expressed in partial derivatives dWΦ (Ψ, x) =
∂ WΦ ∂ WΦ dΨ + dx. ∂Ψ ∂x
(1.92)
Since Ψ and x are independent variables, Equations (1.86) and (1.92) have to be equal at all values of dΨ and dx, which yields i=
∂ WΦ (Ψ, x) , ∂Ψ
(1.93)
where the partial derivative is calculated by keeping x constant. The force created by the electromagnet at a certain flux linkage level Ψ can be calculated from the magnetic energy ∂ WΦ (Ψ, x) . ∂x
FΦ = −
(1.94a)
The minus sign is due to the coordinate system in Figure 1.14. The corresponding equation is valid for torque as a function of angular displacement θ while keeping flux linkage Ψ constant ∂ WΦ (Ψ, θ ) . ∂θ
TΦ = −
(1.94b)
Alternatively, we may employ coenergy (see Figure 1.15a), which gives us the force directly as a function of current. The coenergy WΦ0005 is determined as a function of i and x as WΦ0005 (i, x) = iΨ − WΦ (Ψ, x) .
Ψ
Ψ
B
co
W'
W'
i (a)
coenergy density
coenergy
coenergy 0
energy density
on ,c
x
W
x,
W
st.
energy
ns t.
energy
(1.95)
0
i (b)
0
H (c)
Figure 1.15 Determination of energy and coenergy with current and flux linkage (a) in a linear case (L is constant), (b) and (c) in a nonlinear case (L saturates as a function of current). If the figure is used to illustrate the behaviour of the relay in Figure 1.14, the distance x remains constant
P1: OTA/XYZ P2: ABC c01 JWBK312-Pyrhonen
November 23, 2008
15:36
Printer Name: Yet to Come
30
Design of Rotating Electrical Machines
In the conversion, it is possible to apply the differential of iΨ d(iΨ ) = i dΨ + Ψ di.
(1.96)
dWΦ0005 (i, x) = d (iΨ ) − dWΦ (Ψ, x) .
(1.97)
Equation (1.95) now yields
By substituting Equations (1.86) and (1.96) into Equation (1.97) we obtain dWΦ0005 (i, x) = Ψ di + FΦ dx.
(1.98)
The coenergy WΦ0005 is a function of two independent variables, i and x. This can be represented by partial derivatives ∂ WΦ0005 ∂ WΦ0005 di + dx. ∂i ∂x
dWΦ0005 (i, x) =
(1.99)
Equations (1.98) and (1.99) have to be equal at all values of di and dx. This gives us Ψ =
∂ WΦ0005 (i, x) , ∂i
(1.100)
FΦ =
∂ WΦ0005 (i, x) . ∂x
(1.101a)
Correspondingly, when the current i is kept constant, the torque is TΦ =
∂ WΦ0005 (i, θ ) . ∂θ
(1.101b)
Equation (1.101) gives a mechanical force or a torque directly from the current i and displacement x, or from the angular displacement θ . The coenergy can be calculated with i and x WΦ0005
0002i (i 0 , x0 ) =
Ψ (i, x0 )di.
(1.102)
0
In a linear system, Ψ and i are proportional, and the flux linkage can be represented by the inductance depending on the distance, as in Equation (1.84). The coenergy is WΦ0005
0002i L (x)i di =
(i, x) = 0
1 L (x) i 2 . 2
(1.103)
P1: OTA/XYZ P2: ABC c01 JWBK312-Pyrhonen
November 23, 2008
15:36
Printer Name: Yet to Come
Principal Laws and Methods in Electrical Machine Design
31
Using Equation (1.91), the magnetic energy can be expressed also in the form 0002 WΦ =
1 µH 2 dV . 2
(1.104)
V
In linear systems, the energy and coenergy are numerically equal, for instance 0.5Li2 = 0.5Ψ 2 /L or (µ/2)H 2 = (1/2µ)B2 . In nonlinear systems, Ψ and i or B and H are not proportional. In a graphical representation, the energy and coenergy behave in a nonlinear way according to Figure 1.15. The area between the curve and flux linkage axis can be obtained from the integral i dΨ , and it represents the energy stored in the magnetic circuit WΦ . The area between the curve and the current axis can be obtained from the integral Ψ di, and it represents the coenergy WΦ0005 . The sum of these energies is, according to the definition, WΦ + WΦ0005 = iΨ.
(1.105)
In the device in Figure 1.14, with certain values of x and i (or Ψ ), the field strength has to be independent of the method of calculation; that is, whether it is calculated from energy or coenergy – graphical presentation illustrates the case. The moving yoke is assumed to be in a position x so that the device is operating at the point a, Figure 1.16a. The partial derivative in Equation (1.92) can be interpreted as 0010WΦ /0010x, the flux linkage Ψ being constant and 0010x → 0. If we allow a change 0010x from position a to position b (the air gap becomes smaller), the stored energy change −0010WΦ will be as shown in Figure 1.16a by the shaded area, and the energy thus becomes smaller in this case. Thus, the force FΦ is the shaded area divided by 0010x when 0010x → 0. Since the energy change is negative, the force will also act in the negative x-axis direction. Conversely, the partial derivative can be interpreted as 0010WΦ0005 0010x, i being constant and 0010x → 0. c
Ψ
Ψ
b
Ψ
a
b
a
after displ.
after displ. x− x
−
x− x
WΦ
i
i (a) Ψ is constant, i decreases
W'Φ
initial state x, const.
initial state x, const. 0
+
0
i (b) i is constant, flux linkage increases
Figure 1.16 Influence of the change 0010x on energy and coenergy: (a) the change of energy, when Ψ is constant; (b) the change of coenergy, when i is constant
P1: OTA/XYZ P2: ABC c01 JWBK312-Pyrhonen
November 23, 2008
15:36
Printer Name: Yet to Come
32
Design of Rotating Electrical Machines
The shaded areas in Figures 1.16a and b differ from each other by the amount of the small triangle abc, the two sides of which are 0010i and 0010Ψ . When calculating the limit, 0010x is allowed to approach zero, and thereby the areas of the shaded sections also approach each other. Equations (1.94) and (1.101) give the mechanical force or torque of electric origin as partial derivatives of the energy and coenergy functions WΦ (Ψ, x) and WΦ0005 (x, i). Physically, the force depends on the magnetic field strength H in the air gap; this will be studied in the next section. According to the study above, the effects of the field can be represented by the flux linkage Ψ and the current i. The force or the torque caused by the magnetic field strength tends to act in all cases in the direction where the stored magnetic energy decreases with a constant flux, or the coenergy increases with a constant current. Furthermore, the magnetic force tends to increase the inductance and drive the moving parts so that the reluctance of the magnetic circuit finds its minimum value. Using finite elements, torque can be calculated by differentiating the magnetic coenergy W 0005 with respect to movement, and by maintaining the current constant: d dW 0005 = T =l dα dα
0002 0002H (B · dH) dV . V
(1.106)
0
In numerical modelling, this differential is approximated by the difference between two successive calculations: l W 0005 (α + 0010α) − W 0005 (α) . T = 0010α
(1.107)
Here, l is the machine length and 0010α represents the displacement between successive field solutions. The adverse effect of this solution is that it needs two successive calculations. Coulomb’s virtual work method in FEM is also based on the principle of virtual work. It gives the following expression for the torque: 0002 T = Ω
dJ H+ l −Bt J−1 dϕ
0002H
B dH |J|−1
d |J| dΩ, dϕ
(1.108)
0
where the integration is carried out over the finite elements situated between fixed and moving parts, having undergone a virtual deformation. In Equation (1.108), l is the length, J denotes the Jacobian matrix, dJ/dϕ is its differential representing element deformation during the displacement dϕ, |J| is the determinant of J and d |J| /dϕ is the differential of the determinant, representing the variation of the element volume during displacement dϕ. Coulomb’s virtual work method is regarded as one of the most reliable methods for calculating the torque and it is favoured by many important commercial suppliers of FEM programs. Its benefit compared with the previous virtual work method is that only one solution is needed to calculate the torque.
P1: OTA/XYZ P2: ABC c01 JWBK312-Pyrhonen
November 23, 2008
15:36
Printer Name: Yet to Come
Principal Laws and Methods in Electrical Machine Design
33
Figure 1.17 Flux solution of a loaded 30 kW, four-pole, 50 Hz induction motor, the machine rotating counterclockwise as a motor. The figure depicts a heavy overload. The tangential field strength in this case is very large and produces a high torque. The enlarged figure shows the tangential and normal components of the field strength in principle. Reproduced by permission of Janne Nerg
1.5 Maxwell’s Stress Tensor; Radial and Tangential Stress Maxwell’s stress tensor is probably the most generic idea of producing magnetic stresses, forces and torque. We discussed previously that the linear current density A on a metal surface creates tangential field strength components on the metal surfaces. Such tangential field strength components are essential in both tangential stress generation and torque generation in rotating-field electrical machines. In numerical methods, Maxwell’s stress tensor is often employed in the calculation of forces and torque. The idea is based on Faraday’s statement according to which stress occurs in the flux lines. Figures 1.17 depict the flux solution for an air gap of an asynchronous machine, when the machine is operating under a heavy load. Such a heavy load condition is selected in order to illustrate clearly the tangential routes of the flux lines. When we compare Figure 1.17 with Figure 1.6, we can see the remarkable difference in the behaviour of the flux lines in the vicinity of the air gap. In the figures, the flux lines cross the air gap somewhat tangentially so that if we imagine the flux lines to be flexible, they cause a notable torque rotating the rotor counterclockwise. According to Maxwell’s stress theory, the magnetic field strength between objects in a vacuum creates a stress σ F on the object surfaces, given by
σF =
1 µ0 H 2 . 2
(1.109)
The stress occurs in the direction of lines of force and creates an equal pressure perpendicularly to the lines. When the stress term is divided into its normal and tangential components
P1: OTA/XYZ P2: ABC c01 JWBK312-Pyrhonen
November 23, 2008
15:36
Printer Name: Yet to Come
34
Design of Rotating Electrical Machines
with respect to the object in question, we obtain σ Fn =
1 2 2 , µ0 Hn − Htan 2
σ Ftan = µ0 Hn Htan .
(1.110) (1.111)
Considering torque production, the tangential component σ Ftan is of the greatest interest. The total torque exerted on the rotor can be obtained by integrating the stress tensor for instance over a cylinder Γ that confines the rotor. The cylinder is dimensioned exactly to enclose the rotor. The torque is obtained by multiplying the result by the radius of the rotor. Note that no steel may be left inside the surface to be integrated. The torque can be calculated by the following relationship: l T = µ0
0002 Γ
0005 0004 B2n dΓ , r × (B · n) BdS − 2
(1.112)
where l is the length, B is the flux density vector, n the normal unit vector in the elements and r the lever arm, in other words the vector which connects the rotor origin to the midpoint of the segment dΓ . The former term contains the tangential force contributing to the torque. Since n and r are parallel the latter term does not contribute to the torque but represents the normal stress. Maxwell’s stress tensor illustrates well the fundamental principle of torque generation. Unfortunately, because of numerical inaccuracies, for instance in the FEM, the obtained torque must be employed with caution. Therefore, in the FEM analysis, the torque is often solved by other methods, for instance Arkkio’s method, which is a variant of Maxwell’s stress tensor and is based on integrating the torque over the whole volume of the air gap constituted by the layers of radii rs and rr . The method has been presented with the following expression for the torque: T =
l µ0 (rs − rr )
0002 r Bn Btan dS,
(1.113)
S
in which l is the length, Bn and Btan denote the radial and tangential flux densities in the elements of surface S and formed between radii rr and rs . dS is the surface of one element. The magnetizing current method is yet another variant of Maxwell’s stress method used in FEM solvers. This method is based on the calculation of the magnetizing current and the flux density over the element edges that constitute the boundary between the iron or permanent magnet and the air. Here the torque can be determined by the following expression: l T = µ0
0002
0012
r×
0013000b
00140015 2 2 2 Btan,Fe n − Btan,Fe Btan,air − Bn,air t dΓc , − Btan,air
(1.114)
Γc
where l is the machine length, Γc denotes all the interfaces between the iron or permanent magnet and the air, and dΓc is the length of the element edge located at the boundary. The
P1: OTA/XYZ P2: ABC c01 JWBK312-Pyrhonen
November 23, 2008
15:36
Printer Name: Yet to Come
Principal Laws and Methods in Electrical Machine Design
35
vector r is the lever arm, in other words the vector connecting the rotor origin to the midpoint of dΓc . Btan and Bn denote the tangential and normal flux densities with respect to dΓ c . The subscript Fe refers to the iron or permanent magnet. The normal unit vector is n and tangential unit vector t. Equation (1.70) states that a linear current density A creates a tangential field strength in an electrical machine: Htan,δ = A and Btan,δ = µ0 A. According to Equation (1.111), the tangential stress in an air gap is given by σ Ftan = µ0 Hn Htan = µ0 Hn A = Bn A.
(1.115)
This equation gives a local time-dependent value for the tangential stress when local instantaneous values for the normal flux density Bn and the linear current density A are given. Air-gap flux density and linear current density thereby determine the tangential stress occurring in electrical machines. If we want to emphasize the place and time dependence of the stress, we may write the expression in the form σ Ftan (x, t) = µ0 Hn (x, t) Htan (x, t) = µ0 Hn (x, t) A (x, t) = Bn (x, t) A (x, t) .
(1.116)
This expression is a very important starting point for the dimensioning of an electrical machine. The torque of the machine may be directly determined by this equation when the rotor dimensions are selected. Example 1.7: Assume a sinusoidal air-gap flux density distribution having a maximum value of 0.9 T and a sinusoidal linear current density with a maximum value of 40 kA/m in the air gap. To simplify the case, also assume that the distributions are overlapping; in other words, there is no phase shift. This condition may occur on the stator surface of a synchronous machine; however, in the case of an induction machine, the condition never takes place in the steady state, since the stator also has to carry the magnetizing current. In our example, both the diameter and the length of the rotor are 200 mm. What is the power output, if the rotation speed is 1450 min−1 ? Solution: Because σ Ftan (x) = Bˆ n sin (x) Aˆ sin (x), the average tangential stress becomes σ Ftan (x) = 0.5 Bˆ n Aˆ = 18 kPa. The active surface area of the rotor is πDl = 0.126 m2 . When we multiply the rotor surface area by the average tangential stress, we obtain 2270 N. This tangential force occurs everywhere at a radial distance of 0.1 m from the centre of the axis, the torque being thus 227 N m. The angular velocity is 151 rad/s, which produces a power of approximately 34 kW. These values are quite close to the values of a real, totally enclosed 30 kW induction machine. In electrical machines, the tangential stresses typically vary between 10 and 50 kPa depending on the machine construction, operating principle and especially on the cooling. For instance, the values for totally enclosed, permanent magnet synchronous machines vary typically between 20 and 30 kPa. For asynchronous machines, the values are somewhat lower. In induction machines with open-circuit cooling, the value of 50 kPa is approached. Using direct cooling methods may give notably higher tangential stresses.
P1: OTA/XYZ P2: ABC c01 JWBK312-Pyrhonen
November 23, 2008
15:36
Printer Name: Yet to Come
36
Design of Rotating Electrical Machines
Example 1.8: Calculate the force between two iron bodies when the area of the air gap between the bodies is 10 cm2 , and the flux density is 1.5 T. The relative permeability of iron is assumed to be 700. It is also assumed that the tangential component of the field strength is zero. Solution: σ Fn
0004 00052 0004 00052 Bn A 1 2 1 5 Vs = µ0 Hn = µ0 = 8.95 · 10 2 2 µ0 Am m 5VAs 5 N = 8.95 · 10 = 8.95 · 10 2 . m3 m
This is the stress in the air gap. The force acting on the iron can be approximated by multiplying the stress by the area of the air gap. Strictly speaking, we should investigate the permeability difference of the iron and air, the force acting on the iron therefore being FFn
0004 0005 0004 0005 1 1 N = 1− 0.001 m2 · 8.95 · 105 2 = 894 N. = Sσ Fn 1 − µrFe 700 m
No magnetic force is exerted on the air (a nonmagnetic material (µr = 1)), although some stress occurs in the air because of the field strength. Only the part of air-gap flux that is caused by the magnetic susceptibility of the iron circuit creates a force. By applying the stress tensor, we may now write for a normal force
FFn
B 2 Sδ = δ 2 µ0
0004 0005 1 1− . µr
(1.117)
For iron, 1/µr 1, and thus, in practice, the latter term in Equation (1.117) is of no significance, unless the iron is heavily saturated. From this example, we may conclude that the normal stress is usually notably higher than the tangential stress. In these examples, the normal stress was 895 000 Pa, and the tangential stress 18 000 Pa. Some cases have been reported in which attempts have been made to apply normal stress in rotating machines.
1.6 Self-Inductance and Mutual Inductance Self-inductances and mutual inductances are the core parameters of electrical machines. Permeance is generally determined by
Λ=
Φ Φ = Θ Ni
(1.118)
P1: OTA/XYZ P2: ABC c01 JWBK312-Pyrhonen
November 23, 2008
15:36
Printer Name: Yet to Come
Principal Laws and Methods in Electrical Machine Design
37
and inductance by L=N
Ψ Φ = = N 2 Λ. i i
(1.119)
Inductance describes a coil’s ability to produce flux linkage. Therefore, also its unit H (henry) is equal to V s/A. Correspondingly, the mutual inductance L12 is determined from the flux linkage Ψ 12 , created in winding 1 by the current i2 that flows in winding 2, L 12 =
Ψ12 . i2
(1.120)
In the special case where the flux Φ 12 , created by the current of winding 2, penetrates all the turns of windings 1 and 2, the mutual permeance between the windings is written as Φ12 , N2 i 2
Λ12 =
(1.121)
and the mutual inductance as L 12 = N1 N2 Λ12 .
(1.122)
Here, N 1 is the number of turns of the winding in which the voltage is induced, and N 2 is the number of turns of the winding that produces the flux. The energy equation for a magnetic circuit can be written with the flux linkage as 0002t WΦ =
di i L dt = dt
0
0002t
dΨ dt = i dt
0
0002Ψ i dΨ .
(1.123)
0
If an integral has to be calculated, the volume under observation can be divided into flux tubes. A flux flowing in such a flux tube is created by the influence of N turns of the winding. By taking into account the fact that the field strength H is created by the current i according 0003 to the equation H · dl = kw N i, the equation for the sum of the energies of all flux tubes in the volume observed, that is the total energy of the magnetic circuit that was previously given by the current and flux linkage, may be written as 0002Ψ WΦ =
0002Φ i dΨ =
0
0002B 0001 kw N i dΦ =
0
0002 0002B
0002B 0002 H dV dB =
H · dl · S dB = 0
0
V
H dB dV . V
0
(1.124) The volume integration has to be performed over the volume V in which the flux in question is passing. Energy per volume is thus written in the familiar form dWΦ = dV
0002B H dB, 0
(1.125)
P1: OTA/XYZ P2: ABC c01 JWBK312-Pyrhonen
November 23, 2008
15:36
Printer Name: Yet to Come
38
Design of Rotating Electrical Machines
the energy stored in the complete magnetic circuit being 0002 0002B WΦ =
H dB dV. V
(1.126)
0
As the flux linkage is proportional to the current i, Ψ = Li, the energy can be given also as 0002i WΦ = L
i di = 1/2 Li 2 .
(1.127)
0
Equation (1.126) yields dWΦ 1 = HB, dV 20002 0002 1 1 WΦ = HB dV = µH 2 dV . 2 V 2 V
(1.128) (1.129)
From Equations (1.119), (1.127) and (1.129), we can calculate an ideal overall magnetic permeance for a magnetic circuit of volume V Λ=
1 N 2i 2
0002 HB dV = V
1 N 2i 2
0002 µH 2 dV .
(1.130)
V
Let us now investigate two electric circuits with a common magnetic energy of 0002Ψ1 WΦ =
0002Ψ2 i 1 dΨ1 +
0
i 2 dΨ2 .
(1.131)
0
Also in this case, the magnetic energy can be calculated from Equations (1.125) and (1.126). We can see that the common flux flowing through the flux tube n is Φn =
Ψn1 Ψn2 = = B Sn . N1 N2
(1.132)
This flux tube is magnetized by the sum current linkage of two windings N 1 and N 2 0001 H · dl = i 1 N1 + i 2 N2 .
(1.133)
In a linear system, the fluxes are directly proportional to the sum magnetizing current linkage i 1 N1 + i 2 N2 , and thus we obtain an energy WΦ =
1 1 (i 1 Ψ1 ) + (i 2 Ψ2 ) . 2 2
(1.134)
P1: OTA/XYZ P2: ABC c01 JWBK312-Pyrhonen
November 23, 2008
15:36
Printer Name: Yet to Come
Principal Laws and Methods in Electrical Machine Design
39
Because the flux linkages are created with two windings together, they can be divided into parts Ψ1 = Ψ11 + Ψ12 and Ψ2 = Ψ22 + Ψ21 .
(1.135)
Now, the flux linkages and inductances can be linked Ψ11 = L 11 i 1 ,
Ψ12 = L 12 i 2 ,
Ψ22 = L 22 i 2 ,
Ψ21 = L 21 i 1 .
(1.136)
In Equation (1.136), there are the self-inductances L11 and L22 , and the mutual inductances L12 and L21 . The magnetic energy can now be rewritten as WΦ =
1 2
L 11 i 12 + L 12 i 1 i 2 + L 22 i 22 + L 21 i 2 i 1
= W11 + W12 + W22 + W21 .
(1.137)
The magnetic energy of the magnetic field created by the two current circuits can thus be divided into four parts, two parts representing the energy of the self-inductances and two parts representing the energy of the mutual inductances. Correspondingly, the magnetic energy density in a certain volume can be written according to Equation (1.128), after the substitution H = H1 + H2 and B = B1 + B2 ,
(1.138)
dWΦ 1 = (H1 B1 + H1 B2 + H2 B2 + H2 B1 ) . dV 2
(1.139)
in the form
Since in this equation H 1 B2 = H 2 B1 , the energies and inductances have to behave as W 12 = W 21 and L12 = L21 . This gives WΦ = W11 + 2W12 + W22 =
1 1 L 11 i 12 + L 12 i 1 i 2 + L 22 i 22 . 2 2
(1.140)
Equations (1.137) and (1.139) yield W12 =
1 1 L 12 i 1 i 2 = 2 2
0002 H1 B2 dV.
(1.141)
V
Now, we obtain for the permeance between the windings Λ12 = Λ21 , which corresponds to the mutual inductance, by comparing Equation (1.122), Λ12
1 = N1 i 1 N2 i 2
0002 µH1 H2 dV.
(1.142)
V
If the field strengths are created by sinusoidal currents with a phase difference γ i 1 = iˆ1 sin ωt
and i 2 = iˆ2 sin (ωt + γ ) ,
(1.143)
P1: OTA/XYZ P2: ABC c01 JWBK312-Pyrhonen
November 23, 2008
15:36
Printer Name: Yet to Come
40
Design of Rotating Electrical Machines
the mutual average energy of the fields created by these currents is obtained from
W12av
1 1 = L 12 2 2π
00022π 1 iˆ1 iˆ2 dωt = L 12 iˆ1 iˆ2 cos γ . 2
(1.144)
0
Correspondingly, the permeance between the windings is Λ12
2 = ˆ N1 i 1 N2 iˆ2
0002 µH1 H2 cos γ dV.
(1.145)
V
In these equations, γ is the time-dependent phase angle either between the currents in two windings or between the partial field strengths created by these currents. Mutual inductances are important in rotating electrical machines. A machine is, however, usually treated using an equivalent electric circuit in which all the machine windings are presented at the same voltage level. In such cases the mutual inductances are replaced by the magnetizing inductance Lm , which can be calculated using the transformation ratio K as Lm = KL12 . Further discussion of the magnetic circuit properties and inductances, such as magnetizing inductance Lm , will be given in Chapter 3.
1.7 Per Unit Values When analysing electrical machines, especially in electric drives, per unit values are often employed. This brings certain advantages to the analysis, since they show directly the relative magnitude of a certain parameter. For instance, if the relative magnetizing inductance of an asynchronous machine is lm = 3, it is quite high. On the other hand, if it is lm = 1, it is rather low. Now it is possible to compare machines, the rated values of which differ from each other. Relative values can be obtained by dividing each dimension by a base value. When considering electric motors and electric drives, the base values are selected accordingly:
r Peak value for rated stator phase current iˆN . (It is, of course, also possible to select the root r r r r r r r
mean square (RMS) stator current as a base value, instead. In such a case the voltage also has to be selected accordingly.) Peak value for rated stator phase voltage uˆ N . Rated angular frequency ωN = 2π f sN . Rated flux linkage, corresponding also to the rated angular velocity Ψˆ N . Rated impedance Z N . Time in which 1 radian in electrical degrees, tN = 1 rad/ωN , is travelled at a rated angular frequency. Relative time τ is thus measured as an angle τ = ωN t. Apparent power SN corresponding to rated current and voltage. Rated torque T N corresponding to rated power and frequency.
P1: OTA/XYZ P2: ABC c01 JWBK312-Pyrhonen
November 23, 2008
15:36
Printer Name: Yet to Come
Principal Laws and Methods in Electrical Machine Design
41
When operating with sinusoidal quantities, the rated current of the machine is I N and the line-to-line voltage is U N : The base value for current Ib = iˆN =
√
2IN . (1.146) √ UN (1.147) The base value for voltage Ub = uˆ N = 2 √ . 3 Angular frequency ωN = 2π f sN . (1.148) uˆ N The base value for flux linkage Ψb = ΨN = . (1.149) ωN uˆ N . (1.150) The base value for impedance Z b = Z N = iˆN uˆ N The base value for inductance L b = L N = . (1.151) ωN iˆN iˆN The base value for capacitance Cb = CN = . (1.152) ωN uˆ N √ 3 The base value for apparent power Sb = SN = iˆN uˆ N = 3UN IN . (1.153) 2 √ 3UN IN 3 ˆ i N uˆ N cos ϕN = cos ϕN . The base value for torque Tb = TN = 2ωN ωN (1.154)
The relative values to be used are
us , uˆ N is = , ˆi N Rs iˆN = , uˆ N ωN Ψs = , uˆ N ω n = = = n pu , ωN fN
u s,pu =
(1.155)
i s,pu
(1.156)
rs,pu Ψs,pu ωpu
(1.157) (1.158) (1.159)
where n is the rotational speed per second, and τ = ωN t.
(1.160)
The relative values of inductances are the same as the relative values of reactances. Thus, we obtain for instance lm.pu =
Lm Lm iˆN = = X m = xm,pu , uˆ N uˆ N Lb ωN iˆN
(1.161)
P1: OTA/XYZ P2: ABC c01 JWBK312-Pyrhonen
November 23, 2008
15:36
Printer Name: Yet to Come
42
Design of Rotating Electrical Machines
where X m is the magnetizing reactance. We also have a mechanical time constant 0004 TJ = ωN
ωN p
00052
2J , 3uˆ N iˆN cos ϕN
(1.162)
where J is the moment of inertia. According to (1.162), the mechanical time constant is the ratio of the kinetic energy of a rotor rotating at synchronous speed to the power of the machine.
Example 1.9: A 50 Hz star-connected, four-pole, 400 V induction motor has the following nameplate values: PN = 200 kW, ηN = 0.95, cosϕ N = 0.89, I N = 343 A, I S /I N = 6.9, T max /T N = 3, and rated speed 1485 min−1 . The no-load current of the motor is 121 A. Give an expression for the per unit inductance parameters of the motor. Solution: The base angular frequency ωN = 2π f sN = 314/s. √ 2 · 230 V uˆ N ˆ = 1.036 V s. = The base value for flux linkage Ψb = ΨN = ωN 314/s The base value for inductance L b = L N =
Ψˆ N 1.036 V s = 2.14 mH. =√ iˆN 2 · 343 A
The no-load current of the machine is 121 A, and the stator inductance of the machine is thereby about Ls = 230 V/(121 A · 314/s) = 6.06 mH. We guess that 97% of this belongs to the magnetizing inductance. Lm = 0.97 · 6.06 mH = 5.88 mH. The per unit magnetizing inductance is now Lm /Lb = 5.88/2.14 = 2.74 = lm,pu and the stator leakage lsσ = 0.03 · 6.06 mH = 0.18 mH. lsσ,pu = 0.18/2.14 = 0.084. We may roughly state that the per unit short-circuit inductance of the motor is, according to the starting current ratio, lk ≈ 1/ (IS /IN ) = 0.145. Without better knowledge, we divide the short-circuit inductance 50:50 for the stator and rotor per unit leakages: lsσ,pu = lrσ,pu = 0.0725. This differs somewhat from the above-calculated lsσ,pu = 0.18/2.14 = 0.084. However, the guess that 97% of the stator inductance ls,pu = lsσ,pu + lm,pu seems to be correct enough. The motor per unit slip is s = (n syn − n)n syn = (1500 − 1485)/1500 = 0.006 73. The motor per unit slip at low slip values is directly proportional to the per unit rotor resistance. Thus, we may assume that the rotor per unit resistance is of the same order, rr,pu ≈ 0.0067. The rated efficiency of the motor is 95%, which gives 5% per unit losses to the system. If we assume 1% stator resistance rs,pu ≈ 0.01, and 0.5% excess losses, we have 2.8% (5 − 1 − 0.5 − 0.67 = 2.8%) per unit iron losses in the motor. Hence, the losses in the machine are roughly proportional to the per unit values of the stator and rotor resistances. For more detailed information, the reader is referred to Chapter 7.
P1: OTA/XYZ P2: ABC c01 JWBK312-Pyrhonen
November 23, 2008
15:36
Printer Name: Yet to Come
Principal Laws and Methods in Electrical Machine Design
43
1.8 Phasor Diagrams When investigating the operation of electrical machines, sinusoidally alternating currents, voltages and flux linkages are often illustrated with phasor diagrams. These diagrams are based either on generator logic or on motor logic; the principle of the generator logic is that for instance the flux linkage created by the rotor magnetization of a synchronous machine induces an electromotive force in the armature winding of the machine. Here, Faraday’s induction law is applied in the form e=−
dΨ . dt
(1.163)
The flux linkage for a rotating-field machine can be presented as Ψ (t) = Ψˆ ejωt .
(1.164)
The flux linkage is derived with respect to time e=−
dΨ π π = −jωΨˆ ejωt = e−j 2 ωΨˆ ejωt = ωΨˆ ej(ωt− 2 ) . dt
(1.165)
The emf is thus of magnitude ωΨˆ and its phase angle is 90 electrical degrees behind the phasor of the flux linkage. Figure 1.18 illustrates the basic phasor diagrams according to generator and motor logic. As illustrated in Figure 1.18 for generator logic, the flux linkage Ψ m generated by the rotor of a synchronous machine induces a voltage Em in the armature winding of the machine when the machine is rotating. The stator voltage of the machine is obtained by reducing the proportion of the armature reaction and the resistive voltage loss from the induced voltage. If the machine is running at no load, the induced voltage Em equals the stator voltage U s . E m (Us)
Us
Ψs
Ψm
Generator logic
Motor logic
Es
Figure 1.18 Basic phasor diagrams for generator and motor logic
P1: OTA/XYZ P2: ABC c01 JWBK312-Pyrhonen
November 23, 2008
15:36
Printer Name: Yet to Come
44
Design of Rotating Electrical Machines
Motor logic represents the opposite case. According to the induction law, the flux linkage can be interpreted as an integral of voltage. 0002 Ψs =
0002 u s dt =
uˆ s ejωt dt =
1 1 π uˆ s ejωt = uˆ s ej(ωt− 2 ) . jω ω
(1.166)
The phasor of the flux linkage is 90 electrical degrees behind the voltage phasor. Again, differentiating the flux linkage with respect to time produces an emf. In the case of Figure 1.18, a flux linkage is integrated from the voltage, which further leads to the derivation of a back emf now cancelling the supply voltage. As is known, this is the case with inductive components. In the case of a coil, a major part of the supply voltage is required to overcome the self-inductance of the coil. Only an insignificant voltage drop takes place in the winding resistances. The resistive losses have therefore been neglected in the above discussion.
Example 1.10: A 50 Hz synchronous generator field winding current linkage creates at no load a stator winding flux linkage of Ψˆ s = 15.6 V s. What is the internal induced phase voltage (and also the stator voltage) of the machine? Solution: The induced voltage is calculated as eF = −
dΨs = −jωΨˆ s ejωt = −j314/s · 15.6 V s · ejωt = 4900 V · ejωt . dt
Thus 4900 V is the peak value of the stator phase voltage, which gives an effective value of the line-to-line voltage: Ull =
4900 V √ 3 = 6000 V. √ 2
Hence, we have a 6 kV machine at no load ready to be synchronized to the network.
Example 1.11: A rotating-field motor is supplied by a frequency converter at 25 Hz and 200 V fundamental effective line-to-line voltage. The motor is initially a 400 V starconnected motor. What is the stator flux linkage in the inverter supply? Solution: The stator flux linkage is found by integrating the phase voltage supplied to the stator √ 0002 0002 2 · 200 V jωt 1 π jωt e = 1.04 V s · ej(ωt− 2 ) . Ψs ≈ u s dt = uˆ s e dt = √ j25 · 2π 3 Consequently, the flux linkage amplitude is 1.04 V s and it is lagging in a 90◦ phase shift the voltage that creates the flux linkage.
P1: OTA/XYZ P2: ABC c01 JWBK312-Pyrhonen
November 23, 2008
15:36
Printer Name: Yet to Come
Principal Laws and Methods in Electrical Machine Design
45
Bibliography Arkkio, A. (1987) Analysis of Induction Motors Based on the Numerical Solution of the Magnetic Field and Circuit Equations, Dissertation, Electrical Engineering Series No. 59. Acta Polytechnica Scandinavica, Helsinki University of Technology. Carpenter, C.J. (1959) Surface integral methods of calculating forces on magnetised iron parts, IEE Monographs, 342, 19–28. Johnk, C.T.A. (1975) Engineering Electromagnetic Fields and Waves, John Wiley & Sons, Inc., New York. Sadowski, N., Lefevre, Y., Lajoie-Mazenc, M. and Cros, J. (1992) Finite element torque calculation in electrical machines while considering the movement. IEEE Transactions on Magnetics, 28 (2), 1410–13. Sihvola, A. and Lindell, I. (2004) Electromagnetic Field Theory 2: Dynamic Fields (S¨ahk¨omagneettinen kentt¨ateoria. 2. dynaamiset kent¨at), Otatieto, Helsinki. Silvester, P. and Ferrari, R.L. (1988) Finite Elements for Electrical Engineers, 2nd edn, Cambridge University Press, Cambridge. Ulaby, F.T. (2001) Fundamentals of Applied Electromagnetics, Prentice Hall, Upper Saddle River, NJ. Vogt, K. (1996) Design of Electrical Machines (Berechnung elektrischer Maschinen), Wiley-VCH Verlag GmbH, Weinheim.
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
2 Windings of Electrical Machines The operating principle of electrical machines is based on the interaction between the magnetic fields and the currents flowing in the windings of the machine. The winding constructions and connections together with the currents and voltages fed into the windings determine the operating modes and the type of the electrical machine. According to their different functions in an electrical machine, the windings are grouped for instance as follows:
r armature windings; r other rotating-field windings (e.g. stator or rotor windings of induction motors); r field (magnetizing) windings; r damper windings; r commutating windings; and r compensating windings. Armature windings are rotating-field windings, into which the rotating-field-induced voltage required in energy conversion is induced. According to IEC 60050-411, the armature winding is a winding in a synchronous, DC or single-phase commutator machine, which, in service, receives active power from or delivers active power to the external electrical system. This definition also applies to a synchronous compensator if the term ‘active power’ is replaced by ‘reactive power’. The air-gap flux component caused by the armature current linkage is called the armature reaction. An armature winding determined under these conditions can transmit power between an electrical network and a mechanical system. Magnetizing windings create a magnetic field required in the energy conversion. All machines do not include a separate magnetizing winding; for instance, in asynchronous machines, the stator winding both magnetizes the machine and acts as a winding, where the operating voltage is induced. The stator winding of an asynchronous machine is similar to the armature of a synchronous machine; however, it is not defined as an armature in the IEC standard. In this material, the asynchronous machine stator is therefore referred to as a rotating-field stator winding, not an armature winding. Voltages are also induced in the rotor of an asynchronous machine, and currents that are significant in torque production are created. However, the rotor itself takes only a rotor’s dissipation power (I 2 R) from the air-gap power of the machine, this power being proportional to the slip; Design of Rotating Electrical Machines Juha Pyrh¨onen, Tapani Jokinen and Val´eria Hrabovcov´a © 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-69516-6
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
48
16:47
Printer Name: Yet to Come
Design of Rotating Electrical Machines
therefore, the machine can be considered stator fed, and, depending on the rotor type, the rotor is called either a squirrel cage rotor or a wound rotor. In DC machines, the function of a rotor armature winding is to perform the actual power transmission, the machine being thus rotor fed. Field windings do not normally participate in energy conversion, double-salient-pole reluctance machines possibly being excluded: in principle, they have nothing but magnetizing windings, but the windings also perform the function of the armature. In DC machines, commutating and compensating windings are windings the purpose of which is to create auxiliary field components to compensate for the armature reaction of the machine and thus improve its performance characteristics. Similar to the previously described windings, these windings do not participate in energy conversion in the machine either. The damper windings of synchronous machines are a special case among different winding types. Their primary function is to damp undesirable phenomena, such as oscillations and fields rotating opposite to the main field. Damper windings are important during the transients of controlled synchronous drives, in which the damper windings keep the air-gap flux linkage instantaneously constant. In the asynchronous drive of a synchronous machine, the damper windings act like the cage windings of asynchronous machines. The most important windings are categorized according to their geometrical characteristics and internal connections as follows:
r phase windings; r salient-pole windings; and r commutator windings. Windings in which separate coils embedded in slots form a single- or poly-phase winding constitute a large group of AC armature windings. However, a similar winding is also employed in the magnetizing of nonsalient-pole synchronous machines. In commutator windings, individual coils contained in slots form a single or several closed circuits, which are connected together via a commutator. Commutator windings are employed only as armature windings of DC and AC commutator machines. Salient-pole windings are normally concentrated field windings, but may also be used as armature windings in for instance fractional slot permanent magnet machines and in double-salient reluctance machines. Concentrated stator windings are used as an armature winding also in small shaded-pole motors. In the following, the windings applied in electrical machines are classified according to the two main winding types, namely slot windings and salient-pole windings. Both types are applicable to both DC and AC cases, Table 2.1.
2.1 Basic Principles 2.1.1 Salient-Pole Windings Figure 2.1 illustrates a synchronous machine with a salient-pole rotor. To magnetize the machine, direct current is fed through brushes and slip rings to the windings located on the salient poles. The main flux created by the direct current flows from the pole shoe to the stator and back simultaneously penetrating the poly-phase slot winding of the stator. The dotted lines in
Poly-phase concentrated pole winding Poly-phase concentrated pole winding Poly-phase distributed rotating-field slot winding Poly-phase distributed rotating-field slot winding Poly-phase distributed rotating-field slot winding Salient-pole winding
PMSM, q ≤ 0.5
Double-salient reluctance machine IM
Slip-ring asynchronous motor DC machine
—
Cast or soldered cage winding, squirrel cage winding Solid rotor made of steel, may be equipped with squirrel cage Poly-phase distributed rotating-field slot winding Rotating-field commutator slot winding
—
Salient-pole winding
Slot winding
—
—
—
—
—
—
—
—
—
Permanent magnets
—
—
—
—
Commutating winding
—
—
—
—
Solid-rotor or short-circuited cage winding, or, for example, aluminium plate on rotor surface Damping should be harmful because of excessive losses —
Solid-rotor core or short-circuited cage winding Short-circuited cage winding possible
Short-circuited cage winding
Damper winding
16:47
Solid-rotor IM
—
—
—
—
Slot winding
Permanent magnets
—
Compensating winding
Salient-pole winding
Rotor winding
November 25, 2008
PMSM, q > 0.5
Poly-phase distributed rotating-field slot winding Poly-phase distributed rotating-field slot winding Poly-phase distributed rotating-field slot winding Poly-phase distributed rotating-field slot winding
Salient-pole synchronous machine Nonsalient-pole synchronous machine Synchronous reluctance machine
Stator winding
Table 2.1 Different types of windings or permanent magnets used instead of a field winding in the most common machine types
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen Printer Name: Yet to Come
Windings of Electrical Machines 49
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
50
Printer Name: Yet to Come
Design of Rotating Electrical Machines
q
(a)
d
τp
q d
(b)
Figure 2.1 (a) Salient-pole synchronous machine (p = 4). The black areas around two pole bodies form a salient-pole winding. (b) Single poles with windings: d, direct axis; q, quadrature axis. In salientpole machines, these two magnetically different, rotor-geometry-defined axes have a remarkable effect on machine behaviour (this issue will be discussed later)
the figure depict the paths of the main flux. Such a closed path of a flux forms the magnetic circuit of a machine. One turn of a coil is a single-turn conductor, through which the main flux travelling in the magnetic circuit passes. A coil is a part of winding that consists of adjacent series-connected turns between the two terminals of the coil. Figure 2.1a illustrates a synchronous machine with a pole with one coil per pole, whereas in Figure 2.1b the locations of the direct (d) and quadrature (q) axes are shown. A group of coils is a part of the winding that magnetizes the same magnetic circuit. In Figure 2.1a, the coils at the different magnetic poles (N and S alternating) form in pairs a group of coils. The number of field winding turns magnetizing one pole is N f . The salient-pole windings located on the rotor or on the stator are mostly used for the DC magnetizing of a machine. The windings are then called magnetizing or sometimes excitation windings. With a direct current, they create a time-constant current linkage Θ. The part of this current linkage consumed in the air gap, that is the magnetic potential difference of the air gap U m,δ , may be, for simplicity, regarded as constant between the quadrature axes, and it changes its sign at the quadrature axis q, Figure 2.2. A significant field of application for salient-pole windings is double-salient reluctance machines. In these machines, a solid salient pole is not utilizable, since the changes of flux are rapid when operating at high speeds. At a simple level, DC pulses are fed to the pole windings with power switches. In the air gap, the direct current creates a flux that tries to turn the rotor in a direction where the magnetic circuit of the machine reaches its minimum reluctance. The torque of the machine tends to be pulsating, and to reach an even torque, the current of a salient-pole winding should be controllable so that the rotor can rotate without jerking. Salient-pole windings are employed also in the magnetizing windings of DC machines. All series, shunt and compound windings are wound on salient poles. The commutating windings are also of the same type as salient-pole windings.
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
Windings of Electrical Machines
51
Βδ Θf
0 Um,
R m,
R m,Fe Θf
U m,Fe
−π/2
Um,
current linkage is created
Θf
U m,Fe
q (a)
π/2
d
q (b)
Figure 2.2 (a) Equivalent magnetic circuit. The current linkages Θ f created by two adjacent salientpole windings. Part U m,δ is consumed in the air gap. (b) The behaviour of the air-gap flux density Bδ . Due to the appropriate design of the pole shoe, the air-gap flux density varies cosinusoidally even though it is caused by the constant magnetic potential difference in the air gap U m,δ . The air-gap magnetic flux density Bδ has its peak value on the d-axis and is zero on the q-axis. The current linkage created by the pole is accumulated by the ampere turns on the pole
Example 2.1: Calculate the field winding current that can ensure a maximum magnetic flux density of Bδ = 0.82 T in the air gap of a synchronous machine if there are 95 field winding turns per pole. It is assumed that the air-gap magnetic flux density of the machine is sinusoidal along the pole shoes and the magnetic permeability of iron is infinite (µFe = ∞) in comparison with the permeability of air µ0 = 4π × 10−7 H/m. The minimum length of the air gap is 3.5 mm. Solution: If µFe = ∞, the magnetic reluctance of iron parts and the iron magnetic potential difference is zero. Now, the whole field current linkage Θf = Nf If is spent in the air gap to create the required magnetic flux density: Θf = Nf If = Um,δ = Hδ δ =
Bδ 0.82 δ= 3.5 · 103 A µ0 4π · 10−7
If the number of turns is N f = 95, the field current is If =
1 Θf 0.82 = 3.5 · 10−3 A = 24 A Nf 4π · 10−7 95
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
52
Design of Rotating Electrical Machines
It should be noted that calculations of this kind are appropriate for an approximate calculation of the current linkage needed. In fact, about 60–90% of the magnetic potential difference in electrical machines is spent in the air gap, and the rest in the iron parts. Therefore, in a detailed design of electrical machines, it is necessary to take into account all the iron parts with appropriate material properties. A similar calculation is valid for DC machines, with the exception that in DC machines the air gap is usually constant under the poles.
2.1.2 Slot Windings Here we concentrate on symmetrical, three-phase AC distributed slot windings, in other words rotating-field windings. However, first, we discuss the magnetizing winding of the rotor of a nonsalient-pole synchronous machine, and finally turn to commutator windings, compensating windings and damper windings. Unlike in the salient-pole machine, since the length of the air gap is now constant, we may create a cosinusoidally distributed flux density in the air gap by producing a cosinusoidal distribution of current linkage with an AC magnetizing winding, Figure 2.3. The cosinusoidal distribution, instead of the sinusoidal one, is used because we want the flux density to reach its maximum on the direct axis, where α = 0. In the case of Figure 2.3, the function of the magnetic flux density approximately follows the curved function of the current linkage distribution Θ (α). In machine design, an equivalent air gap δ e is applied, the target being to create a cosinusoidally alternating flux density in the air gap B (α) =
µ0 Θ (α) . δe
(2.1)
The concept of equivalent air gap δe will be discussed later.
α
d
If
rotor current linkage zQ If
q
π
0
If zQ
q
d
q
α
d
Figure 2.3 Current linkage distribution created by two-pole nonsalient-pole winding and the fundamental of the current linkage. There are zQ conductors in each slot, and the excitation current in the winding is I f . The height of a single step of the current linkage is zQ I f
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
Windings of Electrical Machines
53
The slot pitch τ u and the slot angle α u are the core parameters of the slot winding. The slot pitch is measured in metres, whereas the slot angle is measured in electrical degrees. The number of slots being Q and the diameter of the air gap D, we may write τu =
πD ; Q
αu = p
2π . Q
(2.2)
As the slot pitch is usually constant in nonsalient-pole windings, the current sum (zQ I f ) in a slot has to be of a different magnitude in different slots (in a sinusoidal or cosinusoidal manner to achieve a sinusoidal or cosinusoidal variation of current linkage along the surface of the air gap). Usually, there is a current of equal magnitude flowing in all turns in the slot, and therefore the number of conductors zQ in the slots has to be varied. In the slots of the rotor in Figure 2.3, the number of turns is equal in all slots, and a current of equal magnitude is flowing in the slots. We can see that by selecting zQ slightly differently in different slots, we can improve the stepped waveform of the figure to approach better the cosinusoidal form. The need for this depends on the induced voltage harmonic content in the stator winding. The voltage may be of almost pure sinusoidal waveform despite the fact that the air-gap flux density distribution should not be perfectly sinusoidal. This depends on the stator winding factors for different harmonics. In synchronous machines, the air gap is usually relatively large, and, correspondingly, the flux density on the stator surface changes more smoothly (neglecting the influence of slots) than the stepped current linkage waveform of Figure 2.3. Here, we apply the well-known finding that if two-thirds of the rotor surface are slotted and one-third is left slotless, not only the third harmonic component but any of its multiple harmonics called triplen harmonics are eliminated in the air-gap magnetic flux density, and also the low-order odd harmonics (fifth, seventh) are suppressed.
2.1.3 End Windings Figure 2.4 illustrates how the arrangement of the coil end influences the physical appearance of the winding. The windings a and b in the figure are of equal value with respect to the main flux, but their leakage inductances diverge from each other because of the slightly different coil ends. When investigating winding a of Figure 2.4a, we note that the coil ends form two separate planes at the end faces of the machine. This kind of a winding is therefore called a two-plane winding. The coil ends of this type are depicted in Figure 2.4e. In the winding of Figure 2.4b, the coil ends are overlapping, and therefore this kind of winding is called a diamond winding (lap winding). Figures 2.4c and d illustrate three-phase stator windings that are identical with respect to the main flux, but in Figure 2.4c the groups of coil are not divided, and in Figure 2.4d the groups of coils are divided. In Figure 2.4c, an arbitrary radius r is drawn across the coil end. It is shown that at any position, the radius intersects only coils of two phases, and the winding can thus be constructed as a two-plane winding. A corresponding winding constructed with distributed coils (Figure 2.4d) has to be a three-plane arrangement, since now the radius r may intersect the coil ends of the windings of all the three phases. The part of a coil located in a single slot is called a coil side, and the part of the coil outside the slot is termed a coil end. The coil ends together constitute the end windings of the winding.
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
54
Design of Rotating Electrical Machines
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
(a)
(e)
(b) coil span
end
coil side r
ding
win
(f ) r
1 23 24 2 3 22 4 21 5 20 6 7 19 18 8 9 17 10 16 15 14 12 11 13
1 23 24 2 3 22 4 21 5 20 6 7 19 18 8 9 17 10 16 15 14 12 11 13
(c)
(d)
Figure 2.4 (a) Concentric winding and (b) a diamond winding. In a two-plane winding, the coil spans differ from each other. In the diamond winding, all the coils are of equal width. (c) A two-plane, threephase, four-pole winding with nondivided groups of coil. (d) A three-plane, three-phase, four-pole winding with divided groups of coils. Figures (c) and (d) also illustrate a single main flux path. (e) Profile of an end winding arrangement of a two-plane winding. (f) Profile of an end winding of a three-plane winding. The radii r in the figures illustrate that in a winding with nondivided groups, an arbitrary radius may intersect only two phases, and in a winding with divided groups, the radius may intersect all three phases. The two- or three-plane windings will result correspondingly
2.2 Phase Windings Next, poly-phase slot windings that produce the rotating field of poly-phase AC machines are investigated. In principle, the number of phases m can be selected freely, but the use of a three-phase supply network has led to a situation in which also most electrical machines are of the three-phase type. Another, extremely common type is two-phase electrical machines that are operated with a capacitor start and run motor in a single-phase network. A symmetrical two-phase winding is in principle the simplest AC winding that produces a rotating field. A configuration of a symmetrical poly-phase winding can be considered as follows: the periphery of the air gap is evenly distributed over the poles so that we can determine a pole
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
Windings of Electrical Machines
55
τp
-U
V
W 120
-W
o
U
-V p = 2
U
τv
-V
m = 3 W
-W 120 o
V
-U
180
o
Figure 2.5 Division of the periphery of a three-phase, four-pole machine into phase zones of positive and negative values. The pole pitch is τ p and phase zone distribution τ v . When the windings are located in the zones, the instantaneous currents in the positive and negative zones are flowing in opposite directions
arc, which covers 180 electrical degrees and a corresponding pole pitch, τ p , which is expressed in metres πD . 2p
τp =
(2.3)
Figure 2.5 depicts the division of the periphery of the machine into phase zones of positive and negative values. In the figure, the number of pole pairs p = 2 and the number of phases m = 3. The phase zone distribution is written as τv =
τp . m
(2.4)
The number of zones will thus be 2pm. The number of slots for each such zone is expressed by the term q, as a number of slots per pole and phase q=
Q . 2 pm
(2.5)
Here Q is the number of slots in the stator or in the rotor. In integral slot windings, q is an integer. However, q can also be a fraction. In that case, the winding is called a fractional slot winding.
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
56
Design of Rotating Electrical Machines
The phase zones are distributed symmetrically to different phase windings so that the phase zones of the phases U, V, W, . . . are positioned on the periphery of the machine at equal distances in electrical degrees. In a three-phase system, the angle between the phases is 120 electrical degrees. This is illustrated by the periphery of Figure 2.5, where we have 2 × 360 electrical degrees because of four poles. Now, it is possible to label every phase zone. We start for instance with the positive zone of the phase U. The first positive zone of the phase V will be 120 electrical degrees from the first positive zone of the phase U. Correspondingly, the first positive zone of the phase W will be 120 electrical degrees from the positive zone of the phase V and so on. In Figure 2.5, there are two pole pairs, and hence we need two positive zones for each phase U, V and W. In the slots of each, now labelled phase zones, there are only the coil sides of the labelled phase coil, in all of which the current flows in the same direction. Now, if their direction of current is selected positive in the diagram, the unlabelled zones become negative. Negative zones are labelled by starting from the distance of a pole pitch from the position of the positive zones. Now U and −U, V and −V, W and −W are at distances of 180 electrical degrees from each other.
2.3 Three-Phase Integral Slot Stator Winding The armature winding of a three-phase electrical machine is usually constructed in the stator, and it is spatially distributed in the stator slots so that the current linkage created by the stator currents is distributed as sinusoidally as possible. The simplest stator winding that produces a noticeable rotating field comprises three coils, the sides of which are divided into six slots, because if m = 3, p = 1, q = 1, then Q = 2pmq = 6; see Figures 2.6 and 2.7.
Example 2.2: Create a three-phase, two-pole stator winding with q = 1. Distribute the phases in the slots and illustrate the current linkage created based on the instant values of phase sinusoidal currents. Draw a phasor diagram of the slot voltage and sum the voltages of the individual phases. Create a current linkage waveform in the air gap for the time instant t1 when the phase U voltage is at its positive maximum and for t2 , which is shifted by 30◦ . Solution: If m = 3, p = 1, q = 1, then Q = 2pmq = 6, which is the simplest case of three-phase windings. The distribution of the phases in the slots will be explained based on Figure 2.6. Starting from slot 1, we insert there the positive conductors of the phase U forming zone U1. The pole pitch expressed by the number of slots per pole, or in other words ‘the coil span expressed in the number of slot pitches yQ ’, is yQ =
Q 6 = = 3. 2p 2
Then, zone U2 will be one pole pitch shifted from U1 and will be located in slot 4, because 1 + yQ = 1 + 3 = 4. The beginning of the phase V1 is shifted by 120◦ from U1, which means slot 3 and its end V2 are in slot 6 (3 + 3 = 6). The phase W1 is again shifted from V1 by 120◦ , which means that it is in slot 5 and its end is in slot 2; see
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
Windings of Electrical Machines
57
U1 1 V2
W2
W1
α
2
6
1
p=1 m=3 5
3
2
4
6
5
V1
3 4 U2
U1
U2 (b)
(a)
U1
V2
W2 U
i W1
W
V
V1
t t1
U2 (c)
(d) 1
UU α u = 60 o
6
–4 2 1 5
3
–2 5
3
–6
UW
UV
4 (e)
(f )
Figure 2.6 The simplest three-phase winding that produces a rotating field. (a) A cross-sectional surface of the machine and a schematic view of the main flux route at the observation instant t1 , (b) a developed view of the winding in a plane and (c) a three-dimensional view of the winding. The figure illustrates how the winding penetrates the machine. The coil end at the rear end of the machine is not illustrated as in reality, but the coil comes directly from a slot to another without travelling along the rear end face of the stator. The ends of the phases U, V and W at the terminals are denoted U1–U2, V1–V2 and W1–W2. (d) The three-phase currents at the observed time instant t1 when i W = i V = −1/2i U , which means (iU + iV + iW = 0), (e) a voltage phasor diagram for the given three-phase system, (f) the total phase voltage for individual phases. The voltage of the phase U is created by summing the voltage of slot 1 and the negative voltage of slot 4, and therefore the direction of the voltage phasor in slot 4 is taken opposite and denoted −4. We can see the sum of voltages in both slots and the phase shift by 120◦ of the V- and W-phase voltages
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
58
Design of Rotating Electrical Machines
4i z ΘˆU1 = U Q 2 (a)
zQiU/2
zQiU
π
0
zQiU/2 starting of study
slotted stator inner periphery U1
slot 2
1
6
5
U2
4
3
U1
slot 2
2
Θ
α
0
O
180
U
i
O
V
t1
360
W
O
1
6
5
4
3
2
Θ
α
0
O
180
O
U
i
360
V
O
W
t2 (b)
(c)
Figure 2.7 Current linkages Θ created by a simple three-phase q = 1 winding. (a) Only the phase U is fed by current and observed. A rectangular waveform of current linkage with its fundamental component is shown to explicate the staircase profile of the current linkages below. If all three phases are fed and observed in two different current situations (iU + iV + iW = 0) at two time instants t1 and t2 , see (b) and (c), respectively. The figure also illustrates the fundamental of the staircase current linkage curves. The stepped curves are obtained by applying Amp`ere’s law in the currentcarrying teeth zone of the electrical machine. Note that as time elapses from t1 to t2 , the three-phase currents change and also the position of the fundamental component changes. This indicates clearly the rotating-field nature of the winding. The angle α and the numbers of slots refer to the previous figure, in which we see that the maximum flux density in the air gap lies between slots 6 and 5. This coincides with the maximum current linkage shown in this figure. This is valid if no rotor currents are present
Figure 2.6a. The polarity of instantaneous currents is shown at the instant when the current of the phase U is at its positive maximum value flowing in slot 1, depicted as a cross (the tail of an arrow) in U1 (current flowing away from the observer). Then, U2 is depicted by a dot (the point of the arrow) in slot 4 (current flowing towards the observer). At the same instant in V1 and W1, there are also dots, because the phases V and W are carrying negative current values (see Figure 2.6d), and therefore V2 and W2 are positive, indicated by crosses. In this way, a sequence of slots with inserted phases is as follows: U1, W2, V1, U2, W1, V2, if q = 1.
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
Windings of Electrical Machines
59
The cross-section of the stator winding in Figure 2.6a shows fictitious coils with current directions resulting in the magnetic field represented by the force lines and arrows. The phasor diagram in Figure 2.6e includes six phasors. To determine their number, the largest common divider of Q and p denoted t has to be found. In this case, for Q = 6 and p = 1, t = 1 and therefore the number of phasors is Q/t = 6. The angle between the voltage phasors in the adjacent slots is given by the expression αu =
360◦ p 360◦ · 1 = = 60◦ , Q 6
which results in the numbering of the voltage phasors in slots as shown in Figure 2.6e. Now the total phase voltage for individual phases has to be summed. The voltage of the phase U is created by the positive voltage in slot 1 and the negative voltage in slot 4. The direction of the voltage phasor in slot 4 is taken opposite and denoted −4. We can see the sum of voltages in both slots of the phase U, and the phase shift of 120◦ of the V and W phase voltages in Figure 2.6f. The current linkage waveforms for this winding are illustrated in Figure 2.7b and c for the time instants t1 and t2 , between which the waveforms proceed by 30◦ . The procedure of drawing the figure can be described as follows. We start observation at α = 0. We assume the same constant number of conductors zQ in all slots. The current linkage value on the left in Figure 2.7b is changed stepwise at slot 2, where the phase W is located and is carrying a current with a cross sign. This can be drawn as a positive step of Θ with a certain value (Θ(t1 ) = iuW (t1 )zQ ). Now, the current linkage curve remains constant until we reach slot 1, where the positive currents of the phase U are located. The instantaneous current in slot 1 is the phase U peak current. The current sum is again indicated with a cross sign. The step height is now twice the height in slot 2, because the peak current is twice the current flowing in slot 2. Then, in slot 6, there is again a positive half step caused by the phase V. In slot 5, there is a current sum indicated by a dot, which means a negative Θ step. This is repeated with all slots, and when the whole circle has been closed, we get the current linkage waveform of Figure 2.7b. When this procedure is repeated for one period of the current, we obtain a travelling wave for the current linkage waveform. Figure 2.7c shows the current linkage waveform after 30◦ . Here we can see that if the instantaneous value of a slot current is zero, the current linkage does not change, and the current linkage remains constant; see slots 2 and 5. We can also see that the Θ profiles in b and c are not similar, but the form is changed depending on the time instant at which it is investigated. Figure 2.7 shows that the current linkage produced with such a simple winding deviates considerably from a sinusoidal waveform. Therefore, in electrical machines, more coil sides are usually employed per pole and phase.
Example 2.3: Consider an integral slot winding, where p = 1 and q = 2, m = 3. Distribute the phase winding into the slots, produce an illustration of the windings in the slots, draw a phasor diagram and show the phase voltages of the individual phases. Create a waveform of the current linkage for this winding and compare it with that in Figure 2.7.
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
60
Design of Rotating Electrical Machines
U1 2
1
3
V2 12
4
11
α 12
5 p=1 m=3 6
10 W1
W2
9
3
4
5
7
6
8
9 10 11 12
1
V1
7
8
2
1
U2
W2
U1
V1
W1
U2
(a)
V2
U1
(b) 1
12
2
11 12
1
2
3
4
5
6
7
8
9
12 1
2
3 4
5
6 7
8 9
3 αu = 30o
10
yQ1 = 5
9
U1
U2
yQ = 6
U1
(c) -8
yQ2 = 7
U2
8
5 6
7 (e)
(d) UphU
UphU
2
-7 2
-7
-8
1
1
UphW UphW
(f )
(g)
UphV
UphV
Figure 2.8 Three-phase, two-pole winding with two slots per pole and phase: (a) a stator with 12 slots, the number of slots per pole and phase q = 2, (b) divided coil groups, (c) full-pitch coils of the phase U, (d) average full-pitch coils of the phase U, (e) a phasor diagram with 12 phasors, one for each slot, (f) the sum phase voltage of individual phases corresponding to figure (c), (g) the sum phase voltage of individual phases corresponding to figure (d)
Solution: The number of slots needed for this winding is Q = 2pmq = 2 × 3 × 2 = 12. The cross-sectional area of such a stator with 12 slots and embedded conductors of individual phases is illustrated in Figure 2.8a. The distribution of the slots into the phases is made in the same order as in Example 2.2, but now q = 2 slots per pole and phase. Therefore, the sequence of the slots for the phases is as follows: U1, U1, W2, W2, V1, V1, U2, U2, W1, W1, V2, V2. The direction of the current in the slots will be determined in the same way as above in Example 2.2. The coils wound in individual phases are shown in Figure 2.8b. The pole pitch expressed in number of slot pitches is yQ =
Q 12 = = 6. 2p 2
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
Windings of Electrical Machines
61
Figure 2.8c shows how the phase U is wound to keep the full pitch equal to six slots. In Figure 2.8d, the average pitch is also six, but the individual steps are yQ = 5 and 7, which give the same average result for the value of induced voltage. The phasor diagram has 12 phasors, because t = 1 again. The angle between two phasors of adjacent slots is αu =
360◦ · 1 360◦ p = = 30◦ . Q 12
The phasors are numbered gradually around the circle. Based on this diagram, the phase voltage of all phases can be found. Figures 2.8f and g show that the voltages are the same independent of how the separate coil sides are connected in series. In comparison with the previous example, the geometrical sum is now less than the algebraic sum. The phase shifting between coil side voltages is caused by the distribution of the winding in more than one slot, here in two slots for each pole. This reduction of the phase voltage is expressed by means of a distribution winding factor; this will be derived later. The waveform of the current linkage for this winding is given in Figure 2.9. We can see that it is much closer to a sinusoidal waveform than in the previous example with q = 1. Θ /A
200 Θˆs1
100
α
5
4
3
2
1
12
11
10
9
8
7
6
5
4
3
2
1
Figure 2.9 Current linkage Θs = f (α) created by the winding on the surface of the stator bore of Figure 2.8 at a time i W = i V = −1/2i U . The fundamental Θsl of Θs is given as a sinusoidal curve. The numbering of the slots is also given
In undamped permanent magnet synchronous motors, such windings can also be employed, the number of slots per pole and phase of which being clearly less than one, for instance q = 0.4. In that case, a well-designed machine looks like a rotating-field machine when observed at its terminals, but the current linkage produced by the stator winding deviates so much from the fundamental that, because of excessive harmonic losses in the rotor, no other rotor type comes into question. When comparing Figure 2.9 (q = 2) with Figure 2.7 (q = 1), it is obvious that the higher the term q (slots per pole and phase), the more sinusoidal the current linkage of the stator winding. As we can see in Figure 2.7a, the current linkage amplitude of the fundamental component for one full-pitch coil is ˆ ˆ 1U = 4 z Q i U . Θ π 2
(2.6)
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
62
Design of Rotating Electrical Machines
If the coil winding is distributed into more slots, and q > 1 and N = pqzQ /a, the winding factor must be taken into account: ˆ ˆ 1U = 4 Nkw1 i U . Θ π 2
(2.7)
In a 2p-pole machine (2p > 2), the current linkage for one pole is ˆ ˆ 1U = 4 Nkw1 i U . Θ π 2p
(2.8)
This expression can be rearranged with the number of conductors in a slot. In one phase, there are 2N conductors, and they are embedded in the slots belonging to one phase Q/m. Therefore, the number of conductors in one slot will be zQ =
2N 2m N N = = Q/m 2 pqm pq
(2.9)
and N = qz Q . p
(2.10)
Then N/p presented in Equation (2.8) and in the following can be introduced by qzQ : ˆ ˆ ˆ 1U = 4 Nkw1 i U = 4 qz Q kw1 i U . Θ π 2p π 2
(2.11)
Equation (2.8) can also be expressed by the effective value of sinusoidal phase current if there is a symmetrical system of phase currents: √ ˆ 1U = 4 Nkw1 2I. Θ π 2p
(2.12)
For an m-phase rotating-field stator or rotor winding, the amplitude of current linkage is m/2 times as high √ ˆ 1 = m 4 Nkw1 2I Θ 2 π 2p
(2.13)
and for a three-phase stator or rotor winding, the current linkage amplitude of the fundamental component for one pole is √ √ ˆ 1 = 3 4 Nkw1 2I = 3 Nkw1 2I. Θ 2 π 2p π p
(2.14)
ˆ sν of the harmonic ν of the current linkage of a For a stator current linkage amplitude Θ poly-phase (m > 1) rotating-field stator winding (or rotor winding), when the effective value of the stator current is I s , we may write √ ˆ sν = m 4 kwv Ns 1 2Is = mkwv Ns iˆs . Θ 2 π pν 2 π pν
(2.15)
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
Windings of Electrical Machines
63
Example 2.4: Calculate the amplitude of the fundamental component of stator current linkage, if N s = 200, kw1 = 0.96, m =√3, p = 1 and i sU (t) = iˆ = 1 A, the effective value for a sinusoidal current being Is = (1/ 2) A = 0.707 A. ˆ s1 = 183.3 A, because: Solution: For the fundamental, we obtain Θ √ √ √ ˆ 1 = 3 4 Nkw1 2Is = 3 Nkw1 2Is = 3 · 200 · 0.96 2 · 0.707 A = 183.3 A. Θ 2 π 2p π p π 1
2.4 Voltage Phasor Diagram and Winding Factor Since the winding is spatially distributed in the slots on the stator surface, the flux (which is proportional to the current linkage Θ) penetrating the winding does not intersect all windings simultaneously, but with a certain phase shift. Therefore, the emf of the winding is not calculated directly with the number of turns N s , but the winding factors kwν corresponding to the harmonics are required. The emf of the fundamental induced in the turn is calculated with the flux linkage Ψ by applying Faraday’s induction law e = −Nkw1 dΦ/dt = −dΨ /dt (see Equations 1.3, 1.7 and 1.8). We can see that the winding factor correspondingly indicates the characteristics of the winding to produce harmonics, and it has thus to be taken into account when calculating the current linkage of the winding (Equation 2.15). The common distribution of all the current linkages created by all the windings together produces a flux density distribution in the air gap of the machine, which, when moving with respect to the winding, induces voltages in the conductors of the winding. The phase shift of the induced emf in different coil sides is investigated with a voltage phasor diagram. The voltage phasor diagram is presented in electrical degrees. If the machine is for instance a four-pole one, p = 2, the voltage vectors have to be distributed along two full circles in the stator bore. Figure 2.10a illustrates the voltage phasor diagram of a two-pole winding of Figure 2.8. In Figure 2.10a, phasors 1 and 2 are positive and 7 and 8 are negative for the phase under consideration. Hence, phasors 7 and 8 are turned by 180◦ to form a bunch of phasors. For harmonic ν (excluding slot harmonics that have the same winding factor as the fundamental) the directions of the phasors of the coil sides vary more than in the figure, because the slot angles α u are replaced with the angles να u . According to Figure 2.10b, when calculating the geometric sum of the voltage phasors for a phase winding, the symmetry line for the bunch of phasors, where the negative phasors have been turned opposite, must be found. The angles α ρ of the phasors with respect to this symmetry line may be used in the calculation of the geometric sum. Each phasor contributes to the sum with a component proportional to cos α ρ . We can now write a general presentation for the winding factor kwv of a harmonic ν, by employing the voltage phasor diagram
kwv =
νπ Z 0001 2 cos αρ . Z ρ=1
sin
(2.16)
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
64
Design of Rotating Electrical Machines
∑z U
αz
2
1
–U7
–U 8
3
cosα
αρ
12 4
U2
U2
symmetry line
11 α2
5 -U 8 –U7
10
positive phasors
6 9 7
8
U1
–U8 U2
–U7 (a)
(b)
negative phasors (c)
Figure 2.10 (a), (b) Fundamental voltage phasor diagram for the winding of Figure 2.8 Qs = 12, p = 1, qs = 2. A maximum voltage is induced in the bars in slots 1 and 7 at the moment depicted in the figure, when the rotor is rotating clockwise. The figure also illustrates the calculation of the voltage in a single coil with the radii of the voltage phasor diagram. (c) General application of the voltage phasor diagram in the determination of the winding factor (fractional slot winding since the number of phasors is uneven). The phasors of negative coil sides are turned 180◦ , and then the summing of the resulting bunch of phasors is calculated according to Equation (2.16). A symmetry line is drawn in the middle of the bunch, and each phasor forms an angle α ρ with the symmetry line. The geometric sum of all the phasors lies on the symmetry line
Here Z is the total number of positive and negative phasors of the phase in question, ρ is the ordinal number of a single phasor, and ν is the ordinal number of the harmonic under observation. The coefficient sin νπ/2 in the equation only influences the sign (of the factor). The angle of a single phasor α ρ can be found from the voltage phasor diagram drawn for the specific harmonic, and it is the angle between an individual phasor and the symmetry line drawn for a specific harmonic (cf. Figure 2.10b). This voltage phasor diagram solution is universal and may be used in all cases, but the numerical values of Equation (2.16) do not always have to be calculated directly from this equation, or with the voltage phasor diagram at all. In simple cases, we may apply equations introduced later. However, the voltage phasor diagram forms the basis for the calculations, and therefore its utilization is discussed further when analysing different types of windings. If in Figure 2.10a we are considering a currentless stator of a synchronous machine, a maximum voltage can be induced in the coil sides 1 and 7 at the middle of the pole shoe, when the rotor is rotating at no load inside the stator bore (which corresponds to the peak value of the flux density, but the zero value of the flux penetrating the coil), where the derivative of the flux penetrating the coil reaches its peak value, the voltage induction being at its highest at that moment. If the rotor rotates clockwise, a maximum voltage is induced in coil sides 2 and 8 in a short while, and so on. The voltage phasor diagram then describes the amplitudes of voltages induced in different slots and their temporal phase shift.
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
Windings of Electrical Machines
65
The series-connected coils of the phase U travel, for example, from slot 1 to slot 8 (coil 1) and from slot 2 to slot 7 (coil 2; see Figure 2.8c). Thus a voltage, which is the difference of the phasors U 1 and U 8 , is induced in coil 1. The total voltage of the phase is thus U U = U 1 − U 8 + U 2 − U 7.
(2.17)
The figure also indicates the possibility of connecting the coils in the order 1–7 and 2–8, which gives the same voltage but a different end winding. The winding factor kw1 based on the distribution of the winding for the fundamental is calculated here as a ratio of the geometric sum and the sum of absolute values as follows: kw1 =
U −U +U −U geometric sum = 0002 0002 1 0002 80002 0002 2 0002 00027 0002 = 0.966 ≤ 1. 0002U 0002 + 0002U 0002 + 0002U 0002 + 0002U 0002 sum of absolute values 1 8 2 7
(2.18)
Example 2.5: Equation (2.16) indicates that the winding factor for the harmonics may also be calculated using the voltage phasor diagram. Derive the winding factor for the seventh harmonic of the winding in Figure 2.8. Solution: We now draw a new voltage phasor diagram based on Figure 2.10 for the seventh harmonic, Figure 2.11. τ p1 (a)
τ p7 10
11
12
1
2
3
5
4
6
8
7
9
10
8
1 (b)
(c)
α νu = να u
–U
U 7,2
7,8
–U
–U
7,7
U 7,1 7,7
5π/12
U 7,2
2
7
–U
7,8
Figure 2.11 Deriving the harmonic winding factor: (a) the fundamental and the seventh harmonic field in the air gap over the slots, (b) voltage phasors for the seventh harmonic of a full-pitch q = 2 winding (slot angle α u7 = 210◦ ) and (c) the symmetry line and the sum of the voltage phasors. The phasor angles α ρ with respect to the symmetry line are α ρ = 5π/12 or −5π /12
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
66
Design of Rotating Electrical Machines
Slots 1 and 2 belong to the positive zone of the phase U and slots 7 and 8 to the negative zone measured by the fundamental. In Figure 2.11, we see that the pole pitch of the seventh harmonic is one-seventh of the fundamental pole pitch. Deriving the phasor sum for the seventh harmonic is started for instance with the voltage phasor of slot 1. This phasor remains in its original position. Slot 2 is physically and by the fundamental located 30◦ clockwise from slot 1, but as we are now studying the seventh harmonic, the slot angle measured in degrees for it is 7 × 30◦ = 210◦ , which can also be seen in the figure. The phasor for slot 2 is, hence, located 210◦ clockwise from phasor 1. Slot 7 is located at 7 × 180◦ = 1260◦ from slot 1. Since 1260◦ = 3 × 360◦ + 180◦ phasor 7 remains opposite to phasor 1. Phasor 8 is located 210◦ clockwise from phasor 7 and will find its place 30◦ clockwise from phasor 1. By turning the negative zone phasors by π and applying Equation (2.17) we obtain kw7 =
=
7π 4 0001 2 cos αρ 4 ρ=1
sin
7π 0003 0004 2 cos −5π + cos +5π + cos −5π + cos +5π = −0.2588. 4 12 12 12 12
sin
It is not necessary to apply the voltage phasor diagram, but also simple equations may be derived to directly calculate the winding factor. In principle, we have three winding factors: a distribution factor, a pitch factor and a skewing factor. The last may also be taken into account by a leakage inductance. The winding factor derived from the shifted voltage phasors in the case of a distributed winding is called the distribution factor, denoted by the subscript ‘d’. This factor is always kd1 ≤ 1. The value kd1 = 1 can be reached when q = 1, in which case the geometric sum equals the sum of absolute values, see Figure 2.6f. If q 0006= 1, then kd1 < 1. In fact, this means that the total phase voltage is reduced by this factor (see Example 2.6). If each coil is wound as a full-pitch winding, the coil pitch is in principle the same as the pole pitch. However, the voltage of the phase with full-pitch coils is reduced because of the winding distribution with the factor kd . If the coil pitch is shorter than the pole pitch and the winding is not a full-pitch winding, the winding is called a short-pitch winding, or a chorded winding (see Figure 2.15). Note that the winding in Figure 2.8 is not a short-pitch winding, even though the coil may be realized from slot 1 to slot 8 (shorter than pole pitch) and not from slot 1 to slot 7 (equivalent to pole pitch). A real short pitching is obviously employed in the two-layer windings. Short pitching is another reason why the voltage of the phase winding may be reduced. The factor of such a reduction is called the pitch factor kp . The total winding factor is given as kw = kd · kp .
(2.19)
Equations to calculate the distribution factor kd will now be derived; see Figure 2.12. The equations are based on the geometric sum of the voltage phasors in a similar way as in Figures 2.10 and 2.11. The distribution factor for the fundamental component is given as kd1 =
U1 geometric sum = . sum of absolute values qUcoil1
(2.20)
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
Windings of Electrical Machines
Uv3
U B v2 2
Uv1 A
Uv4
3
4
D
1
r
67
U1
Bˆ 5
5
C qαu/2
αu
Bˆ 1
Uv5
τp5
αν=5 = 90o
τp1 αν=1 = 18o
O (a)
(b)
Figure 2.12 (a) Determination of the distribution factor with a polygon with q = 5, (b) the pole pitch for the fundamental and the fifth harmonic. The same physical angles for the fifth harmonic and the fundamental are shown as an example. Voltages Uv1 − Uv5 represent corresponding coil voltages
According to Figure 2.12, we may write for the triangle ODC U1 qαu qαu sin = 2 ⇒ U1 = 2r sin , 2 r 2
(2.21)
and for the triangle OAB Uv1 αu αu = 2 ⇒ Uv1 = 2r sin . (2.22) sin 2 r 2 We may now write for the distribution factor qαu qαu sin 2r sin U1 2 2 . kd1 = (2.23) = αu = αu qUv1 q2r sin q sin 2 2 This is the basic expression for the distribution factor for the calculation of the fundamental in a closed form. Since the harmonic components of the air-gap magnetic flux density are present, the calculation of the distribution factor for the νth harmonic will be carried out applying the angle να u ; see Figure 2.11b and 2.12b: qαu sin ν 2 . kdν = (2.24) αu q sin ν 2 Example 2.6: Repeat Example 2.5 using Equation (2.24). Solution for ν = 7: 2π 7π qαu sin sin 7 6 6 = −0.2588. 2 = 2 = kdν = π αu 7π 2 sin 7 q sin ν 6·2 2 sin 2 12 The result is the same as above. sin ν
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
68
Design of Rotating Electrical Machines
The expression for the fundamental may be rearranged as Q 2π p π/2 sin 2 pm 2Q m . = = 2π p π/6 q sin q sin 2 · 2 pmq q sin
kd1
(2.25)
For three-phase machines, m = 3, the expression is as follows: kd1 =
1 sin (π/6) = . π/6 π/6 q sin 2q sin q q
(2.26)
This simple expression of the distribution factor for the fundamental is most often employed for practical calculations. Example 2.7: Calculate the phase voltage of a three-phase, four-pole synchronous machine with a stator bore diameter of 0.30 m, a length of 0.5 m and a speed of rotation 1500 min−1 . The excitation creates the air-gap fundamental flux density Bˆ δ1 = 0.8 T. There are 36 slots, in which a one-layer winding with three conductors in each slot is embedded. Solution: According to the Lorentz law, an instantaneous value of the induced electric field strength in a conductor is E = v × B0 . In one conductor embedded in a slot of an AC machine, we may get the induced voltage by integrating, e1c = Bδl v, where Bδ is the local air-gap flux density value of the rotating magnetic field, l is the effective length of the stator iron stack, and v is the speed at which the conductor travels in the magnetic field, see Figure 2.13.
travelling direction Bˆ
Bˆ 1
1
B
av
l' α τ p1
τ p1
τ p1
=ˆ T
(a)
(b)
Figure 2.13 (a) Flux density variation in the air gap. One flux density period travels two pole pitches during one time period T. (b) The flux distribution over one pole and the conductors in slots
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
Windings of Electrical Machines
69
During one period T, the magnetic flux density wave travels two pole pitches, as shown in the figure above. The speed of the magnetic field moving in the air gap is ν=
2τ p = 2τp f. T
The effective value of the induced voltage in one conductor is Bˆ δ E 1c = √ l 2τp f. 2 Contrary to a transformer, where approximately the same value of magnetic flux density penetrates all the winding turns, Figure 2.13 shows that in AC rotating-field machines, the conductors are subject to the sinusoidal waveform of flux density, and each conductor has a different value of magnetic flux density. Therefore, an average value of the magnetic flux density is calculated to unify the value of the magnetic flux for all conductors. The average value of the flux density equals the maximum value of the flux penetrating a full-pitch winding: ˆ = Bδ avl τp . Φ Bδ is spread over the pole pitch τ p , and we get for the average value Bδav =
2ˆ π Bδ ⇒ Bˆ δ = Bδav . π 2
Now, the RMS value of the voltage induced in a conductor written by means of average magnetic flux density is π π ˆ f. E c = √ Bδavl 2τp f = √ Φ 2 2 2 The frequency f is found from the speed n f =
2 · 1500 pn = = 50 Hz. 60 60
Information about three conductors in each slot can be used for calculating the number of turns N in series. In one phase, there are 2N conductors, and they are embedded in the slots belonging to one phase Q/m. Therefore, the number of conductors in one slot zQ will be zQ =
2Nm N 2N = = . Q/m 2 pqm pq
In this case, the number of turns in series in one phase is N = 3 pq = 3 · 2 · 3 = 18, where q = Q/2 pm = 36/4 × 3 = 3. The effective value of the induced voltage in one slot is
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
70
Design of Rotating Electrical Machines
(N / pq)E c . The number of such slots is 2pq. The linear sum of the voltages of all conductors belonging to the same phase must be reduced by the winding factor to get the phase voltage E ph =
N E c q2 pkw . pq
The final expression for the effective value of the induced voltage in the AC rotating machine is E ph = E c
√ N π ˆ N ˆ w1 . q2 pkw1 = √ Φ q2 pkw1 = 2π f ΦNk f pq pq 2
In this example, there is a full-pitch one-layer winding, and therefore kp = 1, and only kd must be calculated (see Equation (2.26)): kw1 = kd1 =
1 30◦ 2q sin q
=
1 30◦ 2 · 3 sin 3
= 0.96.
The maximum value of the magnetic flux is ˆ = 2 Bˆ δ τpl = 2 0.8 · 0.236 · 0.5 = 0.060 Wb Φ π π where the pole pitch τ p is τp =
πDs π · 0.3 = = 0.236 m. 2p 4
An effective value of the phase induced voltage is E ph =
√ √ ˆ d = 2π · 50 · 0.060 · 18 · 0.96 = 230 V. 2π f ΦNk
Example 2.8: The stator of a four-pole, three-phase induction motor has 36 slots, and it is fed by 3 × 400/230 V, 50 Hz. The diameter of the stator bore is Ds = 15 cm and the length lFe = 20 cm. A two-layer winding is embedded in the slots. Besides this, there is a onelayer, full-pitch search coil embedded in two slots. In the no-load condition, a voltage of 11.3 V has been measured at its terminals. Calculate the air-gap flux density, if the voltage drop on the impedance of the search coil can be neglected. Solution: To be able to investigate the air-gap flux density, the data of the search coil can be used. This coil is embedded in two electrically opposite slots, and therefore the distribution factor kd = 1; because it is a full-pitch coil, also the pitch factor kp = 1, and therefore kw = 1.
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
Windings of Electrical Machines
71
Now, the maximum value of magnetic flux is 11.3 ˆ = √ Uc Φ Wb = 0.0127 Wb. =√ 2π f Nc kwc 2π · 50 · 4 · 1.0 The amplitude of the air-gap flux density is ˆ π π Φ π 0.0127 Bˆ δ = Bav = T = 0.847 T. = 2 2 πDs 2 π · 0.15 l 0.2 2p 4
2.5 Winding Analysis The winding analysis starts with the analysis of a single-layer stator winding, in which the number of coils is Qs /2. In the machine design, the following setup is advisable: the periphery of the air gap of the stator bore (diameter Ds ) is distributed evenly in all poles, that is 2p of equal parts, which yields the pole pitch τ p . Figure 2.14 illustrates the configuration of a two-pole slot winding ( p = 1). The pole pitch is evenly distributed in all stator phase windings, that is in ms equal parts. Now we obtain a zone distribution τ sv . In Figure 2.14, the number of stator phases is ms = 3. The number of zones thus becomes 2pms = 6. The number of stator slots in a single zone is Θ
U1
2τp
τsv
+U –V
V
U +W
W
–W
α
0
+V
U 0
–U
α
τp
–U U2
(a)
(b)
Figure 2.14 (a) Three-phase stator diamond winding p = 1, qs = 3, Qs = 18. Only the coil end on the side of observation is visible in the U-phase winding. The figure also illustrates the positive magnetic axes of the phase windings U, V and W. The current linkage creates a flux in the direction of the magnetic axis when the current is penetrating the winding at its positive terminal, for example U1. The current directions of the figure depict a situation in which the current of the windings V and W is a negative half of the current in the winding U. (b) The created current linkage distribution Θ s is shown at the moment when its maximum is in the direction of the magnetic axis of the phase U. The small arrows in (a) at the end winding indicate the current directions and the transitions from coil to coil. The same winding will be observed in Figure 2.23
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
72
Design of Rotating Electrical Machines
qs , which is the number of slots per pole and phase in the stator. By using stator values in the general equation (2.5), we obtain qs =
Qs . 2 pm s
(2.27)
If qs is an integer, the winding is termed an integral slot winding, and if qs is a fraction, the winding is called a fractional slot winding. The phase zones are labelled symmetrically to the phase windings, and the directions of currents are determined so that we obtain a number of ms magnetic axes at a distance of 360◦ /ms from each other. The phase zones are labelled as stated in Section 2.2. The positive zone of the phase U, that is a zone where the current of the phase U is flowing away from the observer, is set as an example (Figure 2.14). Now the negative zone of the phase U is at a distance of 180 electrical degrees; in other words, electrically on the opposite side. The conductors of respective zones are connected so that the current flows as desired. This can be carried out for instance as illustrated in Figure 2.14. In the figure, it is assumed that there are three slots in each zone, qs = 3. The figure shows that the magnetic axis of the phase winding U is in the direction of the arrow drawn in the middle of the illustration. Because this is a three-phase machine, the directions of the currents of the phases V and W have to be such that the magnetic axes of the phases V and W are at a distance of 120◦ (electrical degrees) from the magnetic axis of the phase U. This can be realized by setting the zones of the V and W phases and the current directions according to Figure 2.14. The way in which the conductors of different zones are connected produces different mechanical winding constructions, but the air gap remains similar irrespective of the mechanical construction. However, the arrangement of connections has a significant influence on the space requirements for the end windings, the amount of copper and the production costs of the winding. The connections also have an effect on certain electrical properties, such as the leakage flux of the end windings. The poly-phase winding in the stator of a rotating-field machine creates a flux wave when a symmetric poly-phase current flows in the winding. A flux wave is created for instance when the current linkage of Figure 2.14 begins to propagate in the direction of the positive α-axis, and the currents of the poly-phase winding are alternating sinusoidally as a function of time. We have to note, however, that the propagation speeds of the harmonics created by the winding are different from the speed of the fundamental (nsv = ± ns1 /ν), and therefore the shape of the current linkage curve changes as a function of time. However, the fundamental propagates in the air gap at a speed defined by the fundamental of the current and by the number of pole pairs. Furthermore, the fundamental is usually dominating (when q ≥ 1), and thus the operation of the machine can be analysed basically with the fundamental. For instance, in a three-phase winding, time-varying sinusoidal currents with a 120◦ phase shift in time create a temporally and positionally alternating flux in the windings that are distributed at distances of 120 electrical degrees. The flux distribution propagates as a wave on the stator surface. (See e.g. Figure 7.7 illustrating the fundamental ν = 1 of a six-pole and a two-pole machine.)
2.6 Short Pitching In a double-layer diamond winding, the slot is divided into an upper and a lower part, and there is one coil side in each half slot. The coil side at the bottom of the slot belongs to
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
73
10
11
12
Windings of Electrical Machines
7
8
9
+U
-V
W
6
+U V
-W
-W
5
-V
2
3
W +V
+W -U
bottom
1
top
+W
4
U
+V -U
(a)
( b)
Figure 2.15 (a) Three-phase, double-layer diamond winding Qs = 18, qs = 3, p = 1. One end winding is shown to illustrate the coil span. The winding is created from the previous winding by dividing the slots into upper and bottom layers and by shifting the bottom layers clockwise by a single slot pitch. The magnetic axes of the new short-pitched winding are also shown. (b) A coil end of a double-layer winding produced from preformed copper, with a coil span W or expressed as numbers of slot pitches y. The coil ends start from the left at the bottom of the slot and continue to the right to the top of the slot
the bottom layer of the slot, and the coil side adjacent to the air gap belongs to the upper layer. The number of coils is now the same as the number of slots Qs of the winding; see Figure 2.15b. A double-layer diamond winding is constructed like the single-layer winding. As illustrated in Figure 2.15, there are two zone rings, the outer illustrating the bottom layer and the inner the upper layer, Figure 2.15a. The distribution of zones does not have to be identical in the upper and bottom layers. The zone distribution can be shifted by a multiple of the slot pitch. In Figure 2.15a, a single zone shift equals a single slot pitch. Figure 2.15b illustrates one of the coils of the phase U. By comparing the width of the coil with the coil span of the winding in Figure 2.14, we can see that the coil is now one slot pitch narrower; the coil is said to be short pitched. Because of short pitching, the coil end has become shorter, and the copper consumption is thus reduced. On the other hand, the flux linking the coil decreases somewhat because of short pitching, and therefore the number of coil turns at the same voltage has to be higher than for a full-pitch winding. The short pitching of the coil end is of more significance than the increased number of coil turns, and as a result the consumption of coil material decreases. Short pitching also influences the harmonics content of the flux density of the air gap. A correctly short-pitched winding produces a more sinusoidal current linkage distribution than a full-pitch winding. In a salient-pole synchronous generator, where the flux density distribution is basically governed by the shape of pole shoes, a short-pitch winding produces a more sinusoidal pole voltage than a full-pitch winding. Figure 2.16 illustrates the basic difference of a short-pitch winding and a full-pitch winding.
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
74
Design of Rotating Electrical Machines W = τp
W < τp
1
12
1
12
2
2 U1-6
11
11 U1
U1
3
10
yQ
10 U1-7
9
y 1− 2 yQ
4 9
U7
U6
5 8
6
7
3
y
8
5 6
7
(a)
4
(b)
Figure 2.16 Cross-sectional areas of two machines with 12 slots. The basic differences of (a) a twopole full-pitch winding and (b) a two-pole short-pitch winding. In the short-pitch winding, the width of a single coil W is less than the pole pitch τ p or, expressed as the number of slots, the short pitch y is less than a full pitch yQ . The coil voltage U 1–6 is lower than U 1–7 . The short-pitched coil is located on the chord of the periphery, and therefore the winding type is also called a chorded winding. The coil without short pitching is located on the diameter of the machine
The short-pitch construction is now investigated in more detail. Short pitching is commonly created by winding step shortening (Figure 2.17b), coil side shift in a slot (Figure 2.17c) and coil side transfer to another zone (Figure 2.17d). In Figure 2.17, the zone graphs illustrate the configurations of a full-pitch winding and of the short-pitch windings constructed by the above-mentioned methods. Of these methods, the step shortening can be considered to be created from a full-pitch winding by shifting the upper layer left for a certain number of slot pitches. Coil side shift in a slot is generated by changing the coil sides of the upper and bottom layers in certain slots of a short-pitch winding. For instance, if in Figure 2.17b the coil sides of the bottom layer in slots 8 and 20 are removed to the upper layer, and in slots 12 and 24 the upper coil sides are shifted to the bottom layer, we get the winding of Figure 2.17c. Now, the width of a coil is again W = τp , but because the magnetic voltage of the air gap does not depend on the position of a single coil side, the magnetizing characteristics of the winding remain unchanged. The windings with a coil side shift in a slot and winding step shortening are equal in this respect. The average number of slots per pole and phase for windings with a coil side shift in a slot is qs =
q1 + q2 Qs = ; 2 pm 2
q1 = q + j,
q2 = q − j
(2.28)
where j is the difference of q (the numbers of slots per pole and phase) in different layers. In Figure 2.17, j = 1.
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
Windings of Electrical Machines
75
W=6 τ u = τp
W Full-pitch winding
(a)
24
1
2
3
4
5
7
6
8
9
W= τ p
10 11 12 13 14 15 16 17 18 19 20 21 22 23
τ v =2 τ u
W=5 τ u
(b)
24
1
2
3
4
W
x
5
7
6
8
9
Winding step shortening W=(5/6) τ p
10 11 12 13 14 15 16 17 18 19 20 21 22 23
τ v =2 τ u
W=6 τ u
(c)
24
1
2
3
4
W
5
7
6
8
9
1
2
10 11 12 13 14 15 16 17 18 19 20 21 22 23
2
W=6 τ u
24
W=τ p
τ v =τu
τ v1 =3 τ u
(d)
x Coil side shift in a slot
3
4
Coil s. transfer W= τ p to another zone
5
6
7
8
9
10 11 12 13 14 15 16 17 18
19 20 21 22 23
Figure 2.17 Different methods of short pitching for a double-layer winding: (a) full-pitch winding, (b) winding step shortening, (c) coil side shift in a slot, (d) coil side transfer to another zone. τv , zone; τu , slot pitch; W, coil span; x, coil span decrease. In the figure, a cross indicates one coil end of the phase U, and the dot indicates the other coil end of the phase U. In the graph for a coil side transfer to another zone, the grid indicates the parts of slots filled with the windings of the phase W
Coil side transfer to another zone (Figure 2.17d) can be considered to be created from the full-pitch winding of Figure 2.17a by transferring the side of the upper layers of 2 and 14 to a foreign zone W. There is no general rule for the transfer, but practicality and the purpose of use decide the solution to be selected. The method may be adopted in order to cancel a certain harmonic from the current linkage of the winding. The above-described methods can also be employed simultaneously. For instance, if we shift the upper layer of the coil with a coil side transfer of Figure 2.17d left for the distance of one slot pitch, we receive a combination of a winding step shortening and a coil side transfer. This kind of winding is double short pitched, and it can eliminate two harmonics. This kind of short pitching is often employed in machines where the windings may be rearranged during drive to form another pole number. When different methods are compared, we have to bear in mind that when considering the connection, a common winding step shortening is always the simplest to realize, and the
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
76
Design of Rotating Electrical Machines
consumption of copper is often the lowest. A winding step shortening is an advisable method down to W = 0.8τp without an increase in copper consumption. In short two-pole machines, the ends are relatively long, and therefore it is advisable to use even shorter pitches to make the end winding area shorter. Short pitchings down to W = 0.7τp are used in two-pole machines with prefabricated coils. The most crucial issue concerning short pitching is, however, how completely we wish to eliminate the harmonics. This is best investigated with winding factors. The winding factor kwv has already been determined with Figure 2.10 and Equation (2.16). When the winding is short pitched, and the coil ends are not at a distance of 180 electrical degrees from each other, we can easily understand that short pitching reduces the winding factor of the fundamental. This is described by a pitch factor kpv . Further, if the number of slots per pole and phase is higher than one, we can see that in addition to the pitch factor kpv , the distribution factor kdv is required as was discussed above. Thus, we can consider the winding factor to consist of the pitch factor kpv and the distribution factor kdv and, in some cases, of a skewing factor (cf. Equation 2.35). The full pitch can be expressed in radians as π, as a pole pitch τ p , or as the number of slot pitches yQ covering the pole pitch. The pitch expressed in the number of slots is y, and now the relative shortening is y/yQ . Therefore, the angle of the short pitch is (y/yQ )π. A complement to π, which is the sum of angles in a triangle, is 0004 0003 0004 0003 y y π =π 1− . π− yQ yQ This value will be divided equally between the other two angles as in Figure 2.16b: 0004 0003 π y . 1− 2 yQ Also the pitch factor is defined as the ratio of the geometric sum of phasors and the sum of the absolute values of the voltage phasors, see Figure 2.16b. The pitch factor is kp =
Utotal . 2Uslot
(2.29)
When 0003
00040004 0003 π y cos 1− 2 yQ is expressed in the triangle being analysed, it will be found that it equals the pitch factor defined by 0005 00040004 0003 Utotal 2 y π Utotal = 1− cos = = kp . 2 yQ Uslot 2Uslot 0003
(2.30)
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
Windings of Electrical Machines
77
On rearranging the final expression for the pitch factor will be obtained: 0004 0003 0004 0003 Wπ y π = sin . kp = sin yQ 2 τp 2
(2.31)
In a full-pitch winding, the pitch is equal to the pole pitch, y = yQ , W = τ p and the pitch factor is kp = 1. If the pitch is less than yQ , kp < 1. In a general presentation, the distribution factor kd and the pitch factor kp have to be valid also for the stator harmonics. We may write for the νth harmonic, the pitch factor kpν and the distribution factor kdν 0004 0003 0004 0003 y π Wπ = sin ν , (2.32) kpν = sin ν τp 2 yQ 2 0006 π 0007 2 sin ν sin (νqαu /2) 0003 2m 0004 . = kdν = (2.33) πp Q q sin (ναu /2) sin ν mp Q Here αu is the slot angle, αu = p2π/Q. The skewing factor will be developed in Chapter 4, but it is shown here as 0004 0003 s π sin ν τp 2 ksqν = s π ν τp 2
(2.34)
Here the skew is measured as s/τ p (cf. Figure 4.16). The winding factor is thus a product of these factors
kwν = kpν kdν ksqν
0004 0003 0006 ν π0007 s π sin ν 0004 0003 2 sin τp 2 Wπ 0003m 2 0004 · · = sin ν s π p Q τp 2 ν sin νπ τp 2 mp Q
(2.35)
Example 2.9: Calculate a winding factor for the two-layer winding Q = 24, 2p = 4, m = 3, y = 5 (see Figure 2.17b). There is no skewing, that is ksqν = 1. Solution: The number of slots per phase per pole is q=
24 Q = = 2. 2 pm 4·3
The distribution factor for the three-phase winding is kd1 =
1 30 2q sin q
=
1 2 · 2 sin
30 2
= 0.966.
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
78
Design of Rotating Electrical Machines
The number of slots per pole, or in the other words the pole pitch expressed as the number of slots, is yQ =
Q 24 = = 6. 2p 4
If the pitch is five slots, it means that it is a short pitch, and it is necessary to calculate the pitch factor: 0003 kp1 = sin
y π yQ 2
0004
0003 = sin
5π 62
0004 = 0.966.
The winding factor is kw1 = kd1 kp1 ksq1 = 0.966 · 0.966 · 1 = 0.933.
Example 2.10: A two-pole alternator has on the stator a three-phase two-layer winding embedded in 72 slots, two conductors in each slot, with a short pitch of 29/36. The diameter of the stator bore is Ds = 0.85 m, the effective length of the stack is l = 1.75 m. Calculate the fundamental component of the induced voltage in one phase of the stator winding, if the amplitude of the fundamental component of the air gap flux density is Bˆ δ1 = 0.92 T and the speed of rotation is 3000 min−1 . Solution: The effective value of the induced phase voltage will be calculated from the ex√ ˆ 1 Ns k1w at the frequency of f = pn/60 = 1 · 3000/60 = 50 Hz. pression E 1ph = 2π f Φ The pole pitch is τp = πDs /2 p = π · 0.85 m/2 = 1.335 m. The maximum value of the ˆ 1 = (2/π) Bˆ 1δ τpl = (2/π)0.92 T · 1.335 m · 1.75 m = 1.368 Wb. The magnetic flux is Φ number of slots per pole and phase is qs = Q s /2 pm = 72/2 · 3 = 12. The number of turns in series N s will be determined from the number of conductors in the slot z Q = N / pq = 2 ⇒ N = 2 pq = 2 · 1 · 12 = 24. There is a two-layer distributed short-pitch winding, and therefore both the distribution and pitch factors must be calculated (cf. Equation 2.26): 1 = = 0.955, π/6 π/6 2qs sin 2 · 12 sin q 12 0003 0004 0003 s 0004 29 π y π = sin = 0.953, kp1 = sin yQ 2 36 2
kd1 =
1
because the full pitch is y Q = Q/2 p = 72/2 = 36. The winding factor yields kw1 = k√d1 kp1 = 0.955 · 0.953 √ = 0.91 and the induced phase voltage of the stator is E ph = ˆ 1 Ns kw = 2π · 50 1 1.368 V s · 24 · 0.91 = 6637 V. 2π f Φ s On the other hand, as shown previously, the winding constructed with the coil side shift in a slot in Figure 2.17c proved to have an identical current linkage as the winding step shortening 2.17b, and therefore also its winding factor has to be same. The distribution factor kdν is
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
Windings of Electrical Machines
79
calculated with an average number of slots per pole and phase q = 2, and thus the pitch factor kpν has to be the same as above, although no actual winding step shortening has been performed. For coil side shift in a slot, Equation (2.32) is not valid as such for the calculation of pitch factor (because sin(ν π/2) = 1). When comparing magnetically equivalent windings of Figure 2.17 that apply winding step shortening and coil side shift in a slot, it is shown that an equivalent reduction x of the coil span for a winding with coil side shift is x = τp − W =
1 (q1 − q2 )τu . 2
(2.36)
The substitution of slot pitch τ u = 2pτ p /Q in the equation yields W p = 1 − (q1 − q2 ). τp Q
(2.37)
In other words, if the number of slots per pole and phase of the different layers of coil side shift are q1 and q2 , the winding corresponds to the winding step shortening in the ratio of W/τ p . By substituting (2.37) in Equation (2.32) we obtain a pitch factor kpwν of the coil side shift in a slot
p π kpwν = sin ν 1 − (q1 − q2 ) . (2.38) Q 2 In the case of the coil side shift of Figure 2.17c, q1 = 3 and q2 = 1. We may assume the winding to be a four-pole construction as a whole ( p = 2, Qs = 24). In the figure, a basic winding is constructed of the conductors of the first 12 slots (the complete winding may comprise an undefined number of sets of 12-slot windings in series), and thus we obtain for the fundamental winding factor kpw1
0003 0004 π 5π 2 = sin = 0.966. = sin 1 − (3 − 1) 24 2 62
which is the same result as Equation (2.32) in the case of a winding step shortening of Figure 2.17b. Because we may often apply both the winding step shortening and coil side transfer in a different zone in the same winding, the winding factor has to be rewritten as kwν = kdν kpwν kpν .
(2.39)
With this kind of doubly short-pitched winding, we may eliminate two harmonics, as stated earlier. The elimination of harmonics implies that we select a double-short-pitched winding for which, for instance, kpw5 = 0 and kp7 = 0. Now we can eliminate the undesirable fifth and seventh harmonics. However, the fundamental winding factor will get smaller. The distribution factor kdv is now calculated with the average number of slots per pole and phase q = (q1 + q2 )/2.
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
80
Design of Rotating Electrical Machines
When analysing complicated short-pitch arrangements, it is often difficult to find a universal equation for the winding factor. In that case, a voltage phasor diagram can be employed, as mentioned earlier in the discussion of Figure 2.10. Next, the coil side transfer to another zone of Figure 2.17 is discussed. Figure 2.18a depicts the fundamental voltage phasor diagram of the winding with coil side transfer to another zone in Figure 2.17, assuming that there are Q = 24 slots and 2p = 4 poles. The slot angle is now α u = 30 electrical degrees, and thus the phase shift of the emf is 30◦ . Figure 2.18b depicts the phasors of the phase U in a polygon according to Figure 2.17d. The resultant voltage Uph and its ratio to the sum of the absolute values of the phasors is the fundamental winding factor. By also drawing the resultants of the windings V and W from point 0, we obtain an illustration of the symmetry of a three-phase machine. The other harmonics (ordinal ν) are treated equally, but the phase shift angle of the phasors is now να u .
13 2
1
24
–22
14
3
–20
15
UphU –19
12 4
23
–19
16
11
14
16
5 22
13
17 10
13 6
21
9 7
8
–8
18
–10
–7 20
19
–7 4
2 1 1 0 (a)
(b)
Figure 2.18 Voltage phasor diagram of a four-pole winding with a coil side transfer (Figures 2.17d) and (b) the sum of slot voltage phasors of a single phase. Note that the voltage phasor diagram for a fourpole machine (p = 2) is doubled, because it is drawn in electrical degrees. The parts of the figure are in different scales. In the voltage phasor diagram, there are in principle two layers (one for the bottom layer and another for the top layer), but only one of them is illustrated here. Now two consequent phasors, for example 2 and 14, when placed one after another, form a single radius of the voltage phasor diagram. The winding factor is thus defined by the voltage phasor diagram by comparing the geometrical sum with the sum of absolute values
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
Windings of Electrical Machines
81
2.7 Current Linkage of a Slot Winding The current linkage of a slot winding refers to a function Θ = f (α), created by the winding and its currents in the equivalent air gap of the machine. The winding of Figure 2.8 and its current linkage in the air gap are investigated at a time when iW = iV = −1/2 iU , Figure 2.9. The curved function in the figure is drawn at time t = 0. The phasors of the phase currents rotate at an angular speed ω, and thus after a time 2π/(3ω) = 1/(3f ) the current of the phase V has reached its positive peak, and the function of current linkage has shifted three slot pitches to the right. After a time 2/(3f ), the shift is six slot pitches, and so on. The curved function shifts constantly in the direction +α. To be exact, the curved waveform is of the form presented in the figure only at times t = c/(3f ), when the factor c has values c = 0, 1, 2, 3, . . . . As time elapses, the waveform proceeds constantly. Fourier analysis of the waveform, however, produces harmonics that remain constant. Figure 2.19 illustrates the current linkage Θ(α) produced by a single coil. A flux that passes through the air gap at an angle γ returns at an angle β = 2π − γ . In the case of a nonfullpitch winding, the current linkage is distributed in the ratio of the permeances of the paths. This gives us a pair of equations Θγ β = Θβ γ
z Q i = Θγ + Θβ ;
(2.40)
from which we obtain two constant values for the current linkage waveform Θ(α) Θγ =
β z Q i; 2π
Θβ =
γ z Q i. 2π
(2.41)
The Fourier series of the function Θ(α) of a single coil is ˆ 1 cos α + Θ ˆ 3 cos 3α + Θ ˆ 5 cos 5α + · · · + Θ ˆ ν cos να + · · · . Θ (α) = Θ
(2.42)
γ
Θγ −π
0
izQ +π
α
Θβ zQ
β (a)
β
2π
γ
(b)
Figure 2.19 (a) Currents and schematic flux lines of a short-pitch coil in a two-pole system. (b) Two wavelengths of the current linkage created by a single, narrow coil
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
82
Design of Rotating Electrical Machines
The magnitude of the νth term of the series is obtained from the equation by substituting the function of the current linkage waveform for a single coil ˆν = 2 Θ π
π Θ (α) cos (να) dα = 0
0006 νγ 0007 2 z Q i sin . νπ 2
(2.43)
000e
As γ /W = 2π/2τp , and hence γ /2 = W/τp · (π/2), the last factor of Equation (2.43) sin
0006 νγ 0007 2
0003 0004 Wπ = sin ν = kpν τp 2
(2.44)
is the pitch factor of the harmonic ν for the coil observed. For the fundamental ν = 1, we obtain kp1 . We can thus see that the fundamental is just a special case of the general harmonic ν. While the electrical angle of the fundamental is α, the corresponding angle for the harmonic ν is always να. If now νγ /2 is a multiple of the angle 2π, the pitch factor becomes kpν = 0. Thus, the winding does not produce such harmonics, neither are voltages induced in the winding by the influence of possible flux components at this distribution. However, voltages are induced in the coil sides, but over the whole coil these voltages compensate each other. Thus, with a suitable short pitching, it is possible to eliminate harmful harmonics. In Figure 2.20, there are several coils 1 . . . q in a single pole of a slot winding. The current linkage of each coil is zQ i. The coil angle (in electrical degrees) for the harmonic ν of the narrowest coil is νγ , the next being ν(γ + 2α u ) and the broadest ν(γ + 2(q − 1)α u ). For an arbitrary coil g, the current linkage is, according to Equation (2.43), Θνg =
00070010 000f 0006γ 2 z Q i sin ν + (q − 1)αu . νπ 2 C'
izQ q
C q
iz Q 2
να u
iz Q 1
νγ
(2.45)
νγ /2 ν (q-1) αu /2
α=0
ναu
2
r 1
B
νγ /2 α=0
A
Figure 2.20 Concentric coils of a single pole; the calculation of the winding factor for a harmonic ν
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
Windings of Electrical Machines
83
When all the harmonics of the same ordinal generated by all coils of one phase are summed, we obtain per pole Θνtot
q 0001
0001 2 qz Q i = Θνg = kwν νπ g=1 g=1 0007 000fγ 00100012 0011 νγ 0006γ 2 1 1 1 = z Q i sin + sin ν + αu + · · · + sin ν + (q − 1) αu . νπ 2 2 2 q
(2.46)
The sum kwν in braces can be calculated for instance with the geometrical figure of Figures 2.20 and 2.12. The line segment AC is written as AC = 2r sin
νqαu . 2
(2.47)
ναu 2
(2.48)
The arithmetical sum of unit segments is q AB = q2r sin and we can find for the harmonic ν
kdν
νqαu 2 = = ναu . q AB q sin 2 AC
sin
(2.49)
This equals the distribution factor of Equation (2.33). Now, we see that the line segment AC = qkdν AB . We use Figure 2.12a again. The angle BAC is obtained from Figure 2.12 as the difference of angles OAB and OAC. It is ν(q − 1)α u /2. The projection AC is thus AC = AC sin
ν (γ + (q − 1) αu ) = ACkdν . 2
(2.50)
Here we have a pitch factor influencing the harmonic ν, because in Figure 2.20, ν[γ + (q − 1)α u ] is the average coil width angle. Equation (2.46) is now reduced to Θνtot =
2 kwν qz Q i, π ν
(2.51)
where kwν = kpν kdν .
(2.52)
This is the winding factor of the harmonic ν. It is an important observation. The winding factor was originally found for the calculation of the induced voltages. Now we understand that the same distribution and pitch factors also affect the current linkage harmonic production. By
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
84
Design of Rotating Electrical Machines
substituting the harmonic current linkage Θ ν in Equation (2.42) with the current linkage Θ νtot , we obtain the harmonic ν generated by the current linkage of q coils Θν = Θνtot cos να.
(2.53)
This is valid for a single-phase coil. The harmonic ν created by a poly-phase winding is calculated by summing all the harmonics created by different phases. By its nature, the pitch factor is zero if να u = ±c2π (since sin (νqαu /2) = sin (±cπq) = 0) (i.e. the coil sides are at the same magnetic potential), when the factor c = 0, 1, 2, 3, 4. . . . It therefore allows only the harmonics ν 0006= c
2π . αu
(2.54)
The slot angle and the phase number are interrelated qαu =
π . m
(2.55)
The distribution factor is zero if ν = ±c2m. The winding thus produces harmonics ν = +1 ± 2cm.
(2.56)
Example 2.11: Calculate which ordinals of the harmonics can be created by a three-phase winding. Solution: A symmetrical three-phase winding may create harmonics calculated from Equation (2.56), by inserting m = 3. These are listed in Table 2.2. Table 2.2 Ordinals of the harmonics created by a three-phase winding (m = 3) c
0
1
2
3
4
5
6
7. . .
ν
+1 —
+7 −5
+13 −11
+19 −17
+25 −23
+31 −29
+37 −35
+43. . . −41. . .
Positive sequence Negative sequence
We see that ν = −1, and all even harmonics and harmonics divisible by three are missing. In other words, a symmetrical poly-phase winding does not produce for instance a harmonic propagating in the opposite direction at the fundamental frequency. Instead, a single-phase winding m = 1 creates also a harmonic, the ordinal of which is ν = −1. This is a particularly harmful harmonic, and it impedes the operation of single-phase machines. For instance, a single-phase induction motor, because of the field rotating in the negative direction, does not start without assistance because the positive and negative sequence fields are equally strong.
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
Windings of Electrical Machines
85
Example 2.12: Calculate the pitch and distribution factors for ν = 1, 5, 7 if a chorded stator of an AC machine has 18 slots per pole and the first coil is embedded in slots 1 and 16. Calculate also the relative harmonic current linkages. Solution: The full pitch would be yQ = 18 and a full-pitch coil should be embedded in slots 1 and 19. If the coil is located in slots 1 and 16, the coil pitch is shorted to y = 15. Therefore, the pitch factor for the fundamental will be kp1 = sin
Wπ y π 15 π = sin = sin = 0.966 τp 2 yQ 2 18 2
and correspondingly for the fifth and seventh harmonics 0004 0003 0004 0003 15 π y π kp5 = sin ν = sin −5 = −0.259, yQ 2 18 2 0004 0003 0004 0003 15 π y π kp7 = sin ν = sin 7 = 0.259. yQ 2 18 2 The number of slots per pole and phase is q = 18/3 = 6 and the slot angle is α u = π/18. Now, the distribution factor is
kdν
νqαu 2 = ναu , q sin 2
kd7
7 · 6π/18 2 = −0.145. = 7π/18 6 sin 2
sin
1 · 6π/18 2 = = 0.956, 1π/18 6 sin 2 sin
kd1
−5 · 6π/18 2 = = −0.197, −5π/18 6 sin 2 sin
kd−5
sin
kw1 = kd1 kp1 = 0.956 · 0.966 = 0.923, kw−5 = kd−5 kp−5 = −0.197 · (−0.259) = 0.051, kw7 = kd7 kp7 = −0.145 · 0.259 = −0.038. The winding creates current linkages Θνtot =
2 kwν qz Q i. π ν
Calculating kwv /ν for the harmonics 1, −5, 7 kw1 = 0.923, 1
kw−5 0.051 = = 0.01, −5 −5
kw7 −0.038 = = 0.0054. 7 7
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
86
Design of Rotating Electrical Machines
Here we can see that because of the chorded winding, the current linkages of the fifth and seventh harmonics will be reduced to 1.1 and 0.58% of the fundamental, as the fundamental is also reduced to 92.3% of the full sum of the absolute values of slot voltages.
Example 2.13: A rotating magnetic flux created by a three-phase 50 Hz, 600 min−1 alternator has a spatial distribution of magnetic flux density given by the expression B = Bˆ 1 sin ϑ + Bˆ 3 sin 3ϑ + Bˆ 5 sin 5ϑ = 0.9 sin ϑ + 0.25 sin 3ϑ + 0.18 sin 5ϑ [T]. The alternator has 180 slots, the winding is wound with two layers, and each coil has three turns with a span of 15 slots. The armature diameter is 135 cm and the effective length of the iron core 0.50 m. Write an expression for the instantaneous value of the induced voltage in one phase of the winding. Calculate the effective value of phase voltage and also the line-to-line voltage of the machine. Solution: The number of pole pairs is given by the speed and the frequency: f =
60 f 60 · 50 pn ⇒p= = =5 60 n 600
and the number of poles is 10. The area of one pole is τ pl =
πD π1.35 l = 0.50 = 0.212 m2 . 2p 10
From the expression for the instantaneous value of the magnetic flux density, we may derive Bˆ 1 = 0.9 T, Bˆ 3 = 0.25 T and Bˆ 5 = 0.18 T. The fundamental of the magnetic flux ˆ 1 = (2/π) Bˆ 1 τpl = (2/π) · 0.9 T · 0.212 m2 = 0.1214 V s. To be able to calon the τ p is Φ culate the induced voltage, it is necessary to make a preliminary calculation of some parameters: 180 Q = = 6. 2 pm 10 · 3 π p2π The angle between the voltages of adjacent slots is αu = = . Q 18
The number of slots per pole and phase is q =
The distribution and pitch factors for each harmonic is
kd1
kd5
0006 0006 α 0007 π0007 u sin 6 · sin q 360007 = 0.956, 0006 α2 0007 = 0006π = u q sin 6 sin 2 36 0006 π0007 sin 5 · 6 · 36 0006 = π 0007 = 0.197. 6 sin 5 · 36
kd3
0006 π0007 sin 3 · 6 · 36 0006 = π 0007 = 0.643, 6 sin 3 · 36
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
Windings of Electrical Machines
87
The number of slots per pole is Q p = 180/10 = 18, which would be a full pitch. The coil span is 15 slots, which means the chorded pitch y = 15, and the pitch factors are 0003
0003 0004 0003 0004 0004 0003 0004 y π 15 π y π 15 π = sin = 0.966, kp3 = sin 3 = sin 3 · = −0.707, yQ 2 18 2 yQ 2 18 2 0004 0003 0004 0003 15 π y π = sin 5 · = 0.259 = sin 5 yQ 2 18 2
kp1 = sin kp5
which results in the following winding factors: kw1 = kd1 · kp1 = 0.955 · 0.966 = 0.9234,
kw3 = 0.643 · (−0.707) = −0.4546,
kw5 = 0.197 · 0.259 = 0.051. Now it is possible to calculate the effective values of the induced voltages of the harmonics. The phase number of turns is determined as follows: the total number of coils in a 180-slot machine in a two-layer winding is 180. This means that the number of coils per phase is 180/3 = 60, each coil has three turns, and therefore N = 60 × 3 = 180: √ √ ˆ 1 Nkw1 = 2π · 50/s · 0.1214 V s · 180 · 0.9234 = 4482 V. E 1 = 2π f Φ The induced voltage of harmonics can be written similarly as follows: Eν = =
√ √
ˆ ν Nkwν = 2π f ν Φ
√ √ 2 2 τp1 2π f ν Bˆ ν τpν Nkwν = 2πν f 1 Bˆ ν Nkwν π π ν
2 2π f 1 Bˆ ν τp1 Nkwν . π
The ratio of the νth harmonic and fundamental is √ 2 2π f 1 Bˆ ν τp1 Nkwν Eν Bˆ ν kwν π = √ = 2 E1 Bˆ 1 kw1 2π f 1 Bˆ 1 τp1 Nkw1 π and the results for Eν : Bˆ 3 kw3 0.25 · (−0.4546) 4482 V = −612.9 V, E = ˆB1 kw1 1 0.9 · 0.9225 Bˆ 5 kw5 0.18 · 0.051 E5 = 4482 V = 49.5 V. E1 = 0.9 · 0.9225 Bˆ 1 kw1
E3 =
Finally, the expression for the instantaneous value of the induced voltage is e (t) = Eˆ 1 sin ωt + Eˆ 3 sin 3ωt + Eˆ 5 sin 5ωt √ √ √ = 2E 1 sin ωt + 2E 3 sin 3ωt + 2E 5 sin 5ωt √ √ √ e (t) = 2 · 4482 sin ωt − 2 · 612.9 sin 3ωt + 2 · 49.5 sin 5ωt = 6338.5 sin ωt − 866.77 sin 3ωt + 70 sin 5ωt.
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
88
Design of Rotating Electrical Machines
The total value of the effective phase voltage is E ph =
0013
E 12 + E 32 + E 52 =
0014
44822 + 612.92 + 49.52 V = 4524 V
and its line-to-line voltage is E=
√ 0013 √ 0014 3 E 12 + E 52 = 3 44822 + 49.52 V = 7763.58 V.
The third harmonic component does not appear in the line-to-line voltage, which will be demonstrated later on.
Example 2.14: Calculate the winding factors and per unit magnitudes of the current linkage for ν = 1, 3, −5 if Q = 24, m = 3, q = 2, W/τp = y/yQ = 5/6. Solution: The winding factor is used to derive the per unit magnitude of the current linkage. In Figure 2.21, we have a current linkage distribution of the phase U of a short-pitch winding (Q = 24, m = 3, q = 2, 2p = 4, W/τp = y/yQ = 5/6), as well as its fundamental ˆ The total maximum height of the curand the third harmonic at time t = 0, when i U = i. ˆ rent linkage of a pole pair is at that moment qz Q i. Half of the magnetic circuit (involving a single air gap) is influenced by half of this current linkage. The winding factors for the fundamental and lowest harmonics and the amplitudes of the current linkages according to Equations (2.51) and (2.52) and Example 2.13 are: ν=1 ν=3 ν = −5
kw1 = kp1 kd1 = 0.965 · 0.965 = 0.931 kw3 = kp3 kd3 = −0.707 · 0.707 = −0.5 kw5 = kp−5 kd−5 = −0.258 · 0.258 = −0.067
ˆ 1 = 1.185 Θ ˆ max Θ ˆ 3 = −0.212 Θmax Θ ˆ −5 = −0.017 Θmax Θ
The minus signs for the third- and fifth-harmonic amplitudes mean that, if starting at the same phase, the third and fifth harmonics will have a negative peak value as the fundamental is at its positive peak, see Figures 2.21 and 2.22. For instance, the fundamental is calculated with (2.51); see also (2.15): ˆ 1 = 2 kwν qz Q i = 2 0.931 2z Q i = 1.185z Q i. Θ π ν π 1 Only the fundamental and the third harmonic are illustrated in Figure 2.21. The amplitude of harmonics is often expressed as a percentage of the fundamental. In this case, the amplitude of the third harmonic is 17.8% (0.212/1.185) of the amplitude of the fundamental. However, this is not necessarily harmful in a three-phase machine, because in the harmonic current linkage created by the windings together, the third harmonic is compensated. The situation is illustrated in Figure 2.22, where the currents iU = 1 and iV = iW = −1/2 flow in the winding of Figure 2.21. In salient-pole machines, the third
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
Windings of Electrical Machines
+U
24
1
2
89
–W
3
4
+V
5
6
–U
7
+W
8
9
10
–V
11
+U
12
2 Θ max
Θ max
0
...
Θ (α)
π Θ^1
α
Figure 2.21 Short-pitch winding (Qs = 24, p = 2, m = 3, qs = 2) and the analysis of its current linkage distribution of the phase U. The distribution includes a notable amount of the third harmonic. In the figure, the fundamental and third harmonic are illustrated by dotted lines
harmonic may, however, cause circulating currents in delta connection, and therefore star connection in the armature is preferred. In single- and two-phase machines, the number of slots is preferably selected higher than in three-phase machines, because in these coils, at certain instants, only a single-phase coil alone creates the whole current linkage of the winding. In such a case, the winding alone should produce as sinusoidal a current linkage as possible. In single- and double-phase windings, it is sometimes necessary to fit a different number of conductors in the slots to make the stepped line Θ(α) approach sinusoidal form. A poly-phase winding thus produces harmonics, the ordinals of which are calculated with Equation (2.56). When the stator is fed at an angular frequency ωs , the angular speed of the harmonic ν with respect to the stator is ωνs =
ωs . ν
(2.57)
The situation is illustrated in Figure 2.23, which shows that the shape of the harmonic current linkage changes as the harmonic propagates in the air gap. The deformation of the harmonic indicates the fact that harmonic amplitudes propagate at different speeds and in different directions. A harmonic according to Equation (2.57) induces the voltage of the fundamental frequency in the stator winding. The ordinal of the harmonic indicates how many wavelengths of a harmonic are fitted in a distance 2τ p of a single pole pair of the fundamental. This yields the number of pole pairs and the pole pitch of a harmonic pν = νp, τp τpν = . ν
(2.58) (2.59)
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
90
Design of Rotating Electrical Machines
+U
24
1
–W
2
3
4
+V
5
6
–U
7
8
+W
9
10
–V
11
12
+U
...
Θ
U α
V α
W α
0
Figure 2.22 Compensation of the third harmonic in a three-phase winding. There are currents iU = −2iV = −2iW flowing in the winding. We see that when we sum the third harmonics of the phases V and W with the harmonic of the phase U, the harmonics compensate each other
The amplitude of the νth harmonic is determined with the ordinal from the amplitude of the current linkage of the fundamental, and it is calculated in relation to the winding factors ˆ 1 kwν . ˆν = Θ Θ νkw1
(2.60)
The winding factor of the harmonic ν can be determined with Equations (2.32) and (2.33) by multiplying the pitch factor kpν and the distribution factor kdν :
kwν = kpν kdν
0004 0003 0006 ν π0007 Wπ sin 2 sin ν τp 2 m2 0003 0004 = . p Q sin νπ mp Q
(2.61)
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
Windings of Electrical Machines
Θ
91
2 τp
U
–V
β = ω t1 Θ
τv
+U
–U
–W V
U
2τ p
W +W
+V –U
β = ω t2 Θ
τp
2τ p t5
t1 t3
iU
Θ
β = ω t3
iW
2τ p
iV t2
t4
β = ω t4 Θ
2τ p
β = ω t5
Figure 2.23 Propagation of a harmonic current linkage and the deformations caused by harmonics. If there is a current flowing only in the stator winding, we are able to set the peak of the air-gap flux density at β. The flux propagates but the magnetic axis of the winding U remains stable
Compared with the angular velocity ω1s of the fundamental component, a harmonic current linkage wave propagates in the air gap at a fractional angular velocity ω1s /ν. The synchronous speed of the harmonic ν is also at the same very angular speed ω1s /ν. If a motor is running at about synchronous speed, the rotor is travelling much faster than the harmonic wave. If we have an asynchronously running motor with a per unit slip s = (ωs − pΩr )/ωs (ωs is the stator
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
92
Design of Rotating Electrical Machines
angular frequency and Ω r is the rotor mechanical angular rotating frequency), the slip of the rotor with respect to the νth stator harmonic is given by sν = 1 − ν (1 − s) .
(2.62)
The angular frequency of the νth harmonic in the rotor is thus ωνr = ωs (1 − ν (1 − s)) .
(2.63)
If we have a synchronous machine running with slip s = 0, we immediately observe from Equations (2.62) and (2.63) that the angular frequency created by the fundamental component of the flux density of the stator winding is zero in the rotor co-ordinate. However, harmonic current linkage waves pass the rotor at different speeds. If the shape of the pole shoe is such that the rotor produces flux density harmonics, they propagate at the speed of the rotor and thereby generate pulsating torques with the stator harmonics travelling at different speeds. This is a particular problem in low-speed permanent magnet synchronous motors, in which the rotor magnetization often produces a quadratic flux density and the number of slots in the stator is small, for instance q = 1 or even lower, the amplitudes of the stator harmonics being thus notably high.
2.8 Poly-Phase Fractional Slot Windings If the number of slots per pole and phase q of a winding is a fraction, the winding is called a fractional slot winding. Windings of this type are either concentric or diamond windings with one or two layers. Some advantages of fractional slot windings when compared with integer slot windings are:
r great freedom of choice with respect to the number of slots; r opportunity to reach a suitable magnetic flux density with the given dimensions; r multiple alternatives for short pitching; r if the number of slots is predetermined, the fractional slot winding can be applied to a wider range of numbers of poles than the integral slot winding;
r segment structures of large machines are better controlled by using fractional slot windings; r opportunity to improve the voltage waveform of a generator by removing certain harmonics. The greatest disadvantage of fractional slot windings is subharmonics, when the denominator of q (slots per pole and phase) is n 0006= 2 q=
Q z = . 2 pm n
(2.64)
Now, q is reduced so that the numerator and the denominator are the smallest possible integers, the numerator being z and the denominator n. If the denominator n is an odd number, the winding is said to be a first-grade winding, and when n is an even number, the winding is of the second grade. The most reliable fractional slot winding is constructed by selecting
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
Windings of Electrical Machines
93
n = 2. An especially interesting winding of this type can be designed for fractional slot permanent magnet machines by selecting q = 1/2. In integral slot windings, the base winding is of the length of two pole pitches (the distance of the fundamental wavelength), whereas in the case of fractional slot windings, a distance of several fundamental wavelengths has to be travelled before the phasor of a voltage phasor diagram again meets the exact same point of the waveform. The difference between an integral slot and fractional slot winding is illustrated in Figure 2.24.
B
B
π
0
α
2π
π
0
slot positions
2π
α
p' 2π
slot positions ... Qs =12 p
5...
Q s, 1...
Q s, 1...
Q s'+1
5...
base winding
base winding
(a)
(b)
B 1
2
3
4
5
1
p=5
α
0 slot positions and coil sides of phase U
Q s = 12
1
2
3
4
5
6
7
8
9
10
11
12
1
base winding (c)
Figure 2.24 Basic differences of (a) an integral slot stator winding and (b) a fractional slot winding. The number of stator slots is Qs . In an integral slot winding, the length of the base winding is Qs /p slots ((a): 12 slots, qs = 2), but in a fractional slot winding, the division is not equal ((b): qs < 2). In the observed integer slot winding, the base winding length Qs = 12 and, after that, the magnetic conditions for the slots repeat themselves equally; observe slots 1 and 13. In the fractional slot winding, the base winding is notably longer and contains Q s slots. Figure (c) illustrates an example of a fractional slot winding with Qs = 12 and p = 5. Such a winding may be used in concentrated wound permanent magnet fractional slot machines, where q = 0.4. In a two-layer system, each of the stator phases carries four coils. The coil sides are located in slots 12–1, 1–2, 6–7 and 7–8. The air gap flux density is mainly created by the rotor poles
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
94
Design of Rotating Electrical Machines
In a fractional slot winding, we have to proceed a distance of p pole pairs before a coil side of the same phase again meets exactly the peak value of the flux density. Then, we need a number of Q s phasors of the voltage phasor diagram, pointing in different directions. Now, we can write Q s = p
Qs , p
Q s < Q s ,
p > p .
(2.65)
Here the voltage phasors Q s + 1, 2Q s + 1, 3Q s + 1 and (t − 1)Q s + 1 are in the same position in the voltage phasor diagram as the voltage phasor of slot 1. In this position, the cycle of the voltage phasor diagram is always started again. Either a new periphery is drawn, or more slot numbers are added to the phasors of the initial diagram. In the numbering of a voltage phasor diagram, each layer of the diagram has to be circled p times. Thus, t layers are created in the voltage phasor diagram. In other words, in each electrical machine, there are t electrically equal slot sequences, the slot number of which is Qs = Qs /t and the number of pole pairs p = p/t. To determine t, we have to find the smallest integers Q s and p · t is thus the largest common divider of Qs and p. If Qs /(2pm) ∈ N (N is the set of integers, Neven the set of even integers and Nodd the set of odd integers), we have an integral slot winding, and t = p, Q s = Q s / p and p = p/p = 1. Table 2.3 shows some parameters of a voltage phasor diagram. To generalize the representation, the subscript ‘s’ is left out of what follows. If the number of radii in the voltage phasor diagram is Q = Q/t, the angle of adjacent radii, that is the phasor angle α z , is written as αz =
2π t. Q
(2.66)
The slot angle α u is correspondingly a multiple of the phasor angle α z αu =
p αz = p αz . t
(2.67)
When p = t, we obtain α u = α z , and the numbering of the voltage phasor diagram proceeds continuously. If p > t, α u > α z , a number of (p/t) − 1 phasors have to be skipped in the numbering of slots. In that case, a single layer of a voltage phasor diagram has to be circled (p/t) times when numbering the slots. When considering the voltage phasor diagrams of harmonics ν, we see that the slot angle of the νth harmonic is να u . Also the phasor angle is Table 2.3 Parameters of voltage phasor diagrams t Q = Q/t p = p/t (p/t) − 1
the largest common divider of Q and p, the number of phasors of a single radius, the number of layers of a voltage phasor diagram the number of radii, or the number of phasors of a single turn in a voltage phasor diagram (the number of slots in a base winding) the number of revolutions around a single layer when numbering a voltage phasor diagram the phasors skipped in the numbering of the voltage phasor diagram
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
Windings of Electrical Machines
95
να z . The voltage phasor diagram of the νth harmonic differs from the voltage phasor diagram of the fundamental with respect to the angles, which are ν-fold. Example 2.15: Create voltage phasor diagrams for two different fractional slot windings: (a) Q = 27 and p = 3, (b) Q = 30, p = 4. Solution: (a) Q = 27, p = 3, Q/p = 9 ∈ N, qs = 1.5, t = p = 3, Q = 9, p = 1, α u = α z = 40◦ . There are, therefore, nine radii in the voltage phasor diagram, each having three phasors. Because α u = α z , no phasors are skipped in the numbering, Figure 2.25a. (b) Q = 30, p = 4, Q/p = 7.5 0006∈ N, qs = 1.25, t = 2 0006= p, Q = 15, p = 2, Z = Q/t = 30/2 =15, α z = 360◦ /15 = 24◦ , α u = 2α z = 2 × 24◦ = 48◦ , (p/t) − 1 = 1. In this case, there are 15 radii in the voltage phasor diagram, each having two phasors. Because α u = 2α z , the number of phasors skipped will be (p/t) − 1 = 1. Both of the layers of the voltage phasor diagram have to be circled twice in order to number all the phasors, Figure 2.25b.
24
30 20
10
18
17 22
11
26 17
16
23
19 27
9
8
15
1
5
25
21
12
3 6
14
29
23
2
25 10 3
6 13
21
α u 18
11 5 12
4 26
22
24
9
14
4 13
15
1
7
2
7 16
8
28 α z= αu
(a)
20
27
19
αz
(b)
Figure 2.25 Voltage phasor diagrams for two different fractional slot windings. On the left, the numbering is continuous, whereas on the right, certain phasors are skipped. (a) Q = 27, p = 3, t = 3, Q = 9, p = 1 α u = α z = 40◦ ; (b) Q = 30, p = 4, t = 2, Q = 15, p = 2, α u = 2α z = 48◦ ; α u is the angle between voltages in the slots in electrical degrees and the angle α z is the angle between two adjacent phasors in electrical degrees
2.9 Phase Systems and Zones of Windings 2.9.1 Phase Systems Generally speaking, windings may involve single or multiple phases, the most common case being a three-phase winding, which has been discussed here also. However, various other winding constructions are possible, as illustrated in Table 2.4.
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
96
Design of Rotating Electrical Machines
Table 2.4 Phase systems of the windings of electrical machines. The fourth column introduces radially symmetric winding alternatives Nonreduced winding systems have separate windings for positive and negative magnetic axes
Number of phases m
Reduced system: loaded star point needs a neutral line unless radially symmetric (e.g. m = 6)
1
Normal system: nonloaded star point and no neutral line, unless m = 1
—
m' = 2 2
—
m' = 4 3
—
m' = 6 4
—
m' = 8 5
—
m' = 10 6…
—
m' = 12
12
—
m' = 24 Reading instructions for Table 2.4
L1 L1
L2 N loaded star point
L2 L3 nonloaded star point
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
Windings of Electrical Machines
97
On a single magnetic axis of an electrical machine, only one axis of a single-phase winding may be located. If another phase winding is placed on the same axis, no genuine poly-phase system is created, because both windings produce parallel fluxes. Therefore, each phase system that involves an even number of phases is reduced to involving only half of the original number of phases m as illustrated in Table 2.4. If the reduction produces a system with an odd number of phases, we obtain a radially symmetric poly-phase system, also known as a normal system. If the reduction produces a system with an even number of phases, the result is called a reduced system. In this sense, an ordinary two-phase system is a reduced to a four-phase system, as illustrated in Table 2.4. For an m-phase normal system, the phase angle is αph = 2π/m.
(2.68)
Correspondingly, for a reduced system, the phase angle is αph = π/m.
(2.69)
For example, in a three-phase system α ph3 = 2π/3 and for a two-phase system α ph2 = π/2. If there is even a single odd number as a multiplicand of the phase number in the reduced system, a radially symmetric winding can be constructed again by turning the direction of the suitable phasors by 180 electrical degrees in the system, as shown in Table 2.4 for a six-phase system (6 = 2 × 3). With this kind of a system, a nonloaded star point is created exactly as in a normal system. In a reduced system, the star point is normally loaded, and thus for instance the star point of a reduced two-phase machine requires a conductor of its own, which is not required in a normal system. Without a neutral conductor, a reduced two-phase system becomes a single-phase system, because the windings cannot operate independently, but the same current that produces the current linkage is always flowing in them, and together they form only a single magnetic axis. An ordinary three-phase system also becomes a single-phase system if the voltage supply of one phase ceases for some reason. Of the winding systems in Table 2.4, the three-phase normal system is dominant in industrial applications. Five- and seven-phase windings have been suggested for frequency converter use to increase the system output power at a low voltage. Six-phase motors are used in large synchronous motor drives. In some larger high-speed applications, six-phase windings are also useful. In practice, all phase systems divisible by three are practical in inverter supplies. Each of the three-phase partial systems is supplied by its own three-phase frequency converter having a temporal phase shift 2π/m , in a 12-phase system, for example π/12. For example, a 12-phase system is supplied with four three-phase converters having a π/12 temporal phase shift. Single-phase windings may be used in single-phase synchronous generators and also in small induction motors. In the case of a single-phase-supplied induction motor, however, the motor needs starting assistance, which is often realized as an auxiliary winding with a phase shift of π/2. In such a case, the winding arrangement starts to resemble the two-phase reduced winding system, but since the windings are usually not similar, the machine is not purely a two-phase machine.
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
98
Design of Rotating Electrical Machines
–V
+W
–V +U U V–W +W W –U +V
–V U –W +W
W –U
–V
V –W
–X
+Z +U U V W +V +Y Z Y X +X +W
–Y
+V
+V
–U
–W
+U
+U
–U
(a)
(b)
–Z (c)
Figure 2.26 Zone formation of double-layer windings, m = 3, p = 1. (a) a normal-zone span, (b) a double-zone span, (c) the zone distribution of a six-phase radially symmetric winding with a doublezone span. The tails and heads of the arrows correspond to a situation in which there are currents I U = −2I V = −2I W flowing in the windings. The winding in (a) corresponds to a single-layer winding, which is obtained by unifying the winding layers by removing the insulation layer between the layers
2.9.2 Zones of Windings In double-layer windings, both layers have separate zones: an upper-layer zone and a bottomlayer zone, Figure 2.26. This double number of zones also means a double number of coil groups when compared with single-layer windings. In double-layer windings, one coil side is always located in the upper layer and the other in the bottom layer. In short-pitched doublelayer windings, the upper layer is shifted with respect to the bottom layer, as shown in Figures 2.15 and 2.17. The span of the zones can be varied between the upper and bottom layer, as shown in Figure 2.17 (zone variation). With double-layer windings, we can easily apply systems with a double-zone span, which usually occur only in machines where the windings may be rearranged during the drive to produce another number of poles. In fractional slot windings, zones of varying spans are possible. This kind of zone variation is called natural zone variation. In a single-layer winding, each coil requires two slots. For each slot, there is now half a coil. In double-layer windings, there are two coil sides in each slot, and thus, in principle, there is one coil per slot. The total number of coils zc is thus Q , 2 for double-layer windings: z c = Q. for single-layer windings: z c =
(2.70) (2.71)
The single- and double-layer windings with double-width zones form m coil groups per pole pair. Double-layer windings with a normal zone span from 2m coil groups per pole pair. The total numbers of coil groups are thus pm and 2pm respectively. Table 2.5 lists some of the core parameters of phase windings.
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
Windings of Electrical Machines
99
Table 2.5 Phase winding parameters Winding
Number of coils zc
Number of groups of coil
Average zone span
Average zone angle α zav
Single-layer Double-layer, normal zone span Double-layer, double-zone span
Q/2 Q Q
pm 2pm pm
τ p /m τ p /m 2τ p /m
π/m π/m 2π/m
2.10 Symmetry Conditions A winding is said to be symmetrical if, when fed from a symmetrical supply, it creates a rotating magnetic field. Both of the following symmetry conditions must be fulfilled: a) The first condition of symmetry: Normally, the number of coils per phase winding has to be an integer: Q = pq ∈ N, 2m Q = 2 pq ∈ N. for double-layer windings: m
for single-layer windings:
(2.72) (2.73)
The first condition is met easier by double-layer windings than by single-layer windings, thanks to a wider range of alternative constructions. b) The second condition of symmetry: In poly-phase machines, the angle α ph between the phase windings has to be an integral multiple of the angle α z . Therefore for normal systems, we can write αph Q 2πQ = ∈ N, = αz m2πt mt
(2.74)
αph Q πQ = ∈ N. = αz m2πt 2mt
(2.75)
and for reduced systems
Let us now consider how the symmetry conditions are met with integral slot windings. The first condition is always met, since p and q are integers. The number of slots in integral slot windings is Q = 2pqm. Now the largest common divider t of Q and p is always p. When we substitute p = t into the second symmetry condition, we can see that it is always met, since Q Q = = 2q ∈ N. mt mp
(2.76)
Integral slot windings are thus symmetrical. Because t = p, also α u = α z , and hence the numbering of the voltage phasor diagram of the integral slot winding is always consecutive, as can be seen for instance in Figures 2.10 and 2.18.
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
100
Design of Rotating Electrical Machines
Symmetrical Fractional Slot Windings Fractional slot windings are not necessarily symmetrical. A successful fulfilment of symmetry requirements starts with the correct selection of the initial parameters of the winding. First, we have to select q (slots per pole and phase) so that the fraction presenting the number of slots per pole and phase q=
z n
(2.77)
is indivisible. Here the denominator n is a quantity typical of fractional slot windings. a) The first condition of symmetry: For single-layer windings (Equation 2.72), it is required that in the equation z Q = pq = p , 2m n
p ∈ N. n
(2.78)
Here z and n constitute an indivisible fraction and thus p and n have to be evenly divisible. We see that when designing a winding, with the pole pair number p usually as an initial condition, we can select only certain integer values for n. Correspondingly, for double-layer windings (Equation 2.73), the first condition of symmetry requires that in the equation z Q = 2 pq = 2 p , m n
2p ∈ N. n
(2.79)
On comparing Equation (2.78) with Equation (2.79), we can see that we achieve a wider range of alternative solutions for fractional slot windings by applying a double-layer winding than a single-layer winding. For instance, for a two-pole machine p = 1, a single-layer winding can be constructed only when n = 1, which leads to an integral slot winding. On the other hand, a fractional slot winding, for which n = 2 and p = 1, can be constructed as a double-layer winding. b) The second condition of symmetry: To meet the second condition of symmetry (Equation 2.74), the largest common divider t of Q and p has to be defined. This divider can be determined from the following equation: Q = 2 pqm = 2mz
p p and p = n . n n
According to Equation (2.78), p/n ∈ N, and thus this ratio is a divider of both Q and p. Because z is indivisible by n, the other dividers of Q and p can be included only in the figures 2m and n. These dividers are denoted generally by c and thus p t =c . n
(2.80)
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
Windings of Electrical Machines
101
Now the second condition of symmetry can be rewritten for normal poly-phase windings in a form that is in harmony with Equation (2.74): p 2mz Q 2z n = ∈ N. = p mt c mc n
(2.81)
The divider c of n cannot be a divider of z. The only possible values for c are c = 1 or c = 2. For normal poly-phase systems, m is an odd integer. For reduced poly-phase systems, according to Equation (2.75), it is written as p 2mz Q n = z ∈ N. = p 2mt c 2mc n
(2.82)
For c, this allows only the value c = 1. As shown in Table 2.4, for normal poly-phase windings, the phase number m has to be an odd integer. The divider c = 2 of 2m and n cannot be a divider of m. For reduced poly-phase systems, m is an even integer, and thus the only possibility is c = 1. The second condition of symmetry can now be written simply in the form: n and m cannot have a common divider n/m ∈ / N. If m = 3, n cannot be divisible by three, and the second condition of symmetry reads n ∈ / N. 3
(2.83)
Conditions (2.78) and (2.83) automatically determine that if p includes only the figure 3 as its factor (p = 3, 9, 27, . . . ), a single-layer fractional slot winding cannot be constructed at all. Table 2.6 lists the symmetry conditions of fractional slot windings. As shown, it is not always possible to construct a symmetrical fractional slot winding for certain numbers of pole pairs. However, if some of the slots are left without a winding, a fractional slot winding can be carried out. In practice, only three-phase windings are realized with empty slots. Free slots Qo have to be distributed on the periphery of the machine so that the phase windings become symmetrical. The number of free slots has thus to be divisible by three, and the angle between the corresponding free slots has to be 120◦ . The first condition of symmetry Table 2.6 Conditions of symmetry for fractional slot windings Number of slots per pole and phase q = z/n, where z and n cannot be mutually divisible Type of winding, number of phases Single-layer windings Double-layer windings Two-phase m = 2 Three-phase m = 3
Condition of symmetry p/n ∈ N 2p/n ∈ N n/m 0006∈ N → n/2 0006∈ N n/m 0006∈ N → n/3 0006∈ N
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
102
Design of Rotating Electrical Machines
is now written as Q − Qo ∈ N. 6
(2.84)
Q ∈ N. 3t
(2.85)
Qo ∈ Nodd . 3
(2.86)
The second condition of symmetry is
Furthermore, it is also required that
Usually, the number of free slots is selected to be three, because this enables the construction of a winding, but does not leave a considerable amount of the volume of the machine without utilization. For normal zone width windings with free slots, the average number of slots of a coil group is obtained from the equation Q av =
Q Qo Qo Q − Qo = − =q− . 2 pm 2 pm 2 pm 2 pm
(2.87)
2.11 Base Windings It was shown previously that in fractional slot windings, a certain coil side of a phase winding occurs at the same position with the air gap flux always after p = p/t pole pairs, if the largest common divider t of Q and p is greater than one. In that case, there are t electrically equal slot sequences containing Q slots in the armature, each of which includes a single layer of the voltage phasor diagram. Now it is worth considering whether it is possible to connect a system of t equal sequences of slots containing a winding as t equal independent winding sections. This is possible when all the slots Q of the slot sequence of all t electrically equal slot groups meet the first condition of symmetry. The second condition of symmetry does not have to be met. If Q /m is an even number, both a single-layer and a double-layer winding can be constructed in Q slots. If Q /m is an odd number, only a double-layer winding is possible in Q slots. When constructing a single-layer winding, q has to be an integer. Thus, two slot pitches of t with 2Q slots are all that is required for the smallest, independent, symmetrical singlelayer winding. The smallest independent symmetrical section of a winding is called a base winding. When a winding consists of several base windings, the current and voltage of which are due to geometrical reasons always of the same phase and magnitude, it is possible to connect these basic windings in series and in parallel to form a complete winding. Depending on the number of Q /m, that is whether it is an even or odd number, the windings are defined either as first- or second-grade windings. Table 2.7 lists some of the parameters of base windings.
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
Windings of Electrical Machines
103
Table 2.7 Some parameters of fractional slot base windings Base winding of first grade
Base winding of second grade q = z/n
Parameter q n ∈ Nodd
Denominator n
Parameter Q/tm Divider t, the largest common divider of Q and p
Type of winding
Q ∈ Nodd m Q ∈ Nodd tm
Q ∈ Neven m Q ∈ Neven tm
Parameter Q /m
Slot angle α u expressed with voltage phasor angle α z
n ∈ Neven
p n
t=
αu = nαz = n
t=
2π t Q
Single-layer windings double-layer windings
Number of slots Q* of a base winding Number of pole pairs p* of a base winding Number of layers t* in a voltage phasor diagram for a base winding
Q∗ = p∗ =
αu =
n π αz = n t 2 Q
Single-layer windings
Q t
Q∗ = 2
p =n t
p∗ = 2
t* = 1
2p n
Double-layer windings
Q t
p =n t
Q∗ = p∗ =
t* = 2
Q t
n p = t 2
t* = 1
The asterix * indicates the values of the base winding.
2.11.1 First-Grade Fractional Slot Base Windings In first-grade base windings, Q Q = ∈ Neven . m mt
(2.88)
There are Q* slots in a first-grade base winding, and the following is valid for the parameters of the winding: Q∗ =
Q , t
p∗ =
p = n, t ∗ = 1. t
Both conditions of symmetry (2.72)–(2.75) are met under these conditions.
(2.89)
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
104
Design of Rotating Electrical Machines
2.11.2 Second-Grade Fractional Slot Base Windings A precondition of the second-grade base windings is that Q Q = ∈ Nodd . m mt
(2.90)
According to Equations (2.81) and (2.82), Equation (2.90) is valid for normal poly-phase windings when c = 2 only for even values of n. Thus we obtain t = 2p/n and α u = nα z /2. The first condition of symmetry is met with the base windings of the second grade only when Q* = 2Q . Now we obtain Q Q Q∗ = = ∈ N. 2m m mt
(2.91)
The second-grade single-layer base winding thus comprises two consequent tth parts of a total winding. Their parameters are written as Q∗ = 2
Q , t
p∗ = 2
p = n, t
t ∗ = 2.
(2.92)
With these values, also the second condition of symmetry is met, since Q∗ Q 2Q = ∈ N. = ∗ mt 2m mt
(2.93)
The second-grade double-layer base winding meets the first condition of symmetry immediately when the number of slots is Q* = Q . Hence Q∗ Q Q = = ∈ N. m m mt
(2.94)
The parameters are now Q , t
Q∗ =
p∗ =
n p = , t ∗ = 1. t 2
(2.95)
The second condition of symmetry is now also met.
2.11.3 Integral Slot Base Windings For integral slot windings, t = p. Hence, we obtain for normal poly-phase systems Q Q = = 2q ∈ Neven . mt mp
(2.96)
For a base winding of the first grade, we may write Q∗ =
Q , p
p∗ =
p = 1, t ∗ = 1. p
(2.97)
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
Windings of Electrical Machines
U –U
+W
–V
1 2 3 4 5 6 7 8 9 10
105
V +U
W
–W
13
+V
16
U +W
–U
19
22
V
–V
25
+U
28
W –W
31
+V
34
36
τp
Figure 2.27 Zone distribution for a single-layer winding. Q = 36, p = 2, m = 3, q = 3
Since also the integral slot windings of reduced poly-phase systems form the base windings of the first grade, we can see that all integral slot windings are of the first grade, and that integral slot base windings comprise only a single pole pair. The design of integral slot windings is therefore fairly easy. As we can see in Figure 2.17, the winding construction is repeated without change always after one pole pair. Thus, to create a complete integral slot winding, we connect a sufficient number of base windings to a single pole pair either in series or in parallel. Example 2.16: Create a voltage phasor diagram of a single-layer integral slot winding, for which Q = 36, p = 2, m = 3. Solution: The number of slots per pole and phase is q=
Q = 3. 2 pm
A zone distribution, Figure 2.27, and a voltage phasor diagram, Figure 2.28, are constructed for the winding. A double-layer integral slot winding is now easily constructed by selecting different phasors of the voltage phasor diagram of Figure 2.28, for instance for the upper layer. This way, we can immediately calculate the influence of different short pitchings. The voltage phasor diagram of Figure 2.28 is applicable to the definition of the winding factors for the short-pitched coils of Figure 2.15. Only the zones labelled in the figure will change place. Figure 2.28 is directly applicable to the full-pitch winding of Figure 2.14.
2.12 Fractional Slot Windings 2.12.1 Single-Layer Fractional Slot Windings Fractional slot windings with extremely small fractions are popular in brushless DC machines and permanent magnet synchronous machines (PMSMs). Machines operating with sinusoidal voltages and currents are regarded as synchronous machines even though their air-gap flux density might be rectangular. Figure 2.29 depicts the differences between single-layer and double-layer windings in a case where the permanent magnet rotor has four poles and q = 1/2 .
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
106
Design of Rotating Electrical Machines α z= α u
–U 19
36
α ph
20
35 21 34
+V
+W 17
18
1
2
16
33
22 3 4
15 32
23
5
14
6
13 7
12 31
11
10
9
24
8 25
–W
–V
30 26 29 27
28 +U
Figure 2.28 Complete voltage phasor diagram for a single-layer winding. p = 2, m = 3, Q = 36, q = 3, t = 2, Q = 18, α z = α u = 20◦ . The second layer of the voltage phasor diagram repeats the first layer and it may, therefore, be omitted. The base winding length is 18 slots
–W +U
+U +W –W
–U
+W
+V –V
–U
–V
+V
+V
–V +W
–U +U
–W
Figure 2.29 Comparison of a single-layer and a double-layer fractional slot winding with concentrated coils. Qs = 6, m = 3, p = 2, q = 1/2
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
Windings of Electrical Machines
107
When the number of slots per pole and phase q of a fractional slot machine is greater than one, the coil groups of the winding have to be of the desired slot number q on average. In principle, the zone distribution of the single-layer fractional slot windings is carried out based on either the voltage phasor diagram or the zone diagram. The use of a voltage phasor diagram has often proved to lead to an uneconomical distribution of coil groups, and therefore it is usually advisable to apply a zone diagram in the zone distribution. The average slot number per pole and per phase of a fractional slot winding is hence q, which is a fraction that gives the average number of slots per pole and phase qav . This kind of average number of slots can naturally be realized only by varying the number of slots in different zones. The number of slots in a single zone is denoted by qk . Now / N. qk 0006= qav = q ∈
(2.98)
qav has thus to be an average of the different values of qk . Then we write q =g+
z , n
(2.99)
where g is an integer, and the quotient is indivisible so that z < n. Now we have an average number of slots per pole and phase q = qav , when the width of z zones in n coil groups is set to g + 1 and the width of n − z zones is g: 000e
n z (g + 1) + n − z g z 10001 = g + = q. qk = qav = n k=1 n n
(2.100)
The divergences from a totally symmetrical winding are smallest when the same number of slots per pole and phase occurs in consequent coil groups as seldom as possible. The best fractional slot winding is found with n = 2, when the number of slots per pole and phase varies constantly when travelling from one zone to another. To meet Equation (2.100), at least n groups of coil are required. Now we obtain the required number of coils qav nm = qp ∗ m =
Q∗ . 2
(2.101)
This number corresponds to the size of a single-layer base winding. Thus we have shown again that a base winding is the smallest independent winding for single-layer windings. When the second condition of symmetry for fractional slot windings is considered, it makes no difference how the windings are distributed in the slots (n zones, qk coil sides in each), if only the desired average qav is reached (e.g. 1 + 2 + 1 + 1 + 2 gives an average of 12/5). The nm coil groups of a base winding have to be distributed in m phase windings so that each phase gets n single values of qk (a local number of slots), in the same order in each phase. The coil numbers of consequent coil groups run through the single values of qk n times in m equal cycles. This way, a cycle of coil groups is generated.
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
108
Design of Rotating Electrical Machines
Table 2.8 Order of coil groups for symmetrical single-layer fractional slot windings
Cycle of coil groups 1...m
Number of coil group. This column runs m times from 1 to n (the divider of the fraction q = z/n)
Local number of slots per pole and phase (equals local number of slots per pole and phase qk )
Phase cycle. All the phases are introduced once
Phases from 1 to m (for a three-phase system we have U, V, W)
Number of coil group
1 1 1 1 1
1 2 3 | K
Q1 Q2 Q3 | qk
1 1 1 1 1
U V W | m
1 2 3 | m
1 1 1 1
| | | N
| | | qn
2 2 2 2
U V W |
m+1 m+2 m+3 |
2 2 2 2
n+1 n+2 | n+k | Dn dn + 1 | |
Q1 | | qk | qn Q1 | |
2 2
| | | | | | | | m
| | | | | | | | Cm
dn + k | | (m − 1)n + k | | | | mn
qk | | qk | | | | qn
c+1
U V W | | | | | m
cm + 1 | | | | | | | Nm
d+1
m m m m m m
c c C
N
The first column of Table 2.8 shows m consequently numbered cycles of coil groups. The second column consists of nm coil groups in running order. The third column lists n single values of qk m times in running order. Because the consequent coil groups belong to consequent phases, we get a corresponding running phase cycle in the fourth column. During a single cycle, the adjacent fifth column goes through all the phases U, V, W, . . . , m of the machine. The sixth column repeats the numbers of coil groups.
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
Windings of Electrical Machines
109
Example 2.17: Compare two single-layer windings, an integral slot winding and a fractional slot winding having the same number of poles. The parameters for the integral slot winding are Q = 36, p = 2, m = 3, q = 3 and for the single-layer fractional slot winding Q = 30, p = 2, m = 3, q = 21/2. Solution: For the fractional slot winding, 000e
n z (g + 1) + n − z g z 10001 = g + = q. qav = qk = n k=1 n n We see that in this case g = 2, z = 1, n = 2. Now, a group of coils with z = 1 is obtained, in which there are q1 = g + 1 = 3 coils, and another n − z = 1 group of coils with q2 = g = 2 coils. As p = p* = n = 2, we have here a base winding with three (m = 3) cycles of coil groups of both the coil numbers q1 and q2 . They occur in n = 2 cycles of three phases. Table 2.9 Example of Table 2.8 applied to Figure 2.30. For the fractional slot winding q = z/n = 5/2 Cycle of coil groups
Number of coil group
Number of coils qk
1 1 2 2 3 (= m) 3 (= m)
1 2 (= n) 2+1=3 2+2=4 (2 + 2) + 1 = 5 (2 + 2) + 2 = 6 = nm = 2·3
3 = q1 2 = q2 3 2 3 2
Phase cycle
Phase
1 1 1 2 2 2
U V W U V W
Number of coil group 1 2 3 4 5 6 = nm
In Table 2.9, the example of Table 2.8 is applied to Figure 2.30. The above information presented in Table 2.9 can be presented simply as: qk Phase
3 U
2 V
3 W
2 U
3 V
2 W
Each phase comprises a single coil group with two coils, and one coil group with three coils. Figure 2.30 compares the above integral slot winding and a fractional slot winding. Fractional slot windings create more harmonics than integral slot windings. By dividing the ordinal number ν of the harmonics of a fractional slot winding by the number of pole pairs p* , we obtain ν =
ν . p∗
(2.102)
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
110
Design of Rotating Electrical Machines
Θ
subharmonic
–U
2τ p
τp
0
+W
–V
+U
–W
+V
–U
4τ p
3τp
+W
–V
+U
–W
+V
Figure 2.30 Zone diagrams and current linkage distributions of two different windings (q = 3, q = 2 1/2 ). The integral slot winding is fully symmetrical, but the current linkage distribution of the fractional slot winding (dotted line) differs somewhat from the distribution of the integral slot winding (solid line). The current linkage of the fractional slot winding clearly contains a subharmonic, which has a double pole pitch compared with the fundamental
In integral slot windings, such relative ordinal numbers of the harmonics are the following odd integers: ν = 1, 3, 5, 7, 9, . . . . For fractional slot windings, when ν = 1, 2, 3, 4, 5, . . . , the relative ordinal number gets the values ν = 1/p* , ν = 2/p* , ν = 3/p* , . . . ; in other words, values for which ν < 1, ν 0006∈ N or ν ∈ Neven . The lowest harmonic created by an integral slot winding is the fundamental (ν = 1), but a fractional slot winding can also produce subharmonics (ν < 1). Other harmonics also occur, the ordinal number of which is a fraction or an even integer. These harmonics cause additional forces, unintended torques and losses. These additional harmonics are the stronger, the greater is the zone variation; in other words, the divergence of the current linkage distribution from the respective distribution of an integral slot winding. In poly-phase windings, not all the integer harmonics are present. For instance, in the spectrum of three-phase windings, those harmonics are absent, the ordinal number of which is divisible by three, because α ph,ν = α ph,1 = ν 360◦ /m = ν 120◦ , and thus, because of the displacement angle of the phase windings α ph = 120◦ , they do not create a voltage between different phases.
Example 2.18: Design a single-layer fractional slot winding of the first grade, for which Q = 168, p = 20, m = 3. What is the winding factor of the fundamental? Solution: The number of slots per pole and phase is q=
168 2 =1 . 2 · 20 · 3 5
We have a fractional slot winding with n = 5 as a divider. The conditions of symmetry (Table 2.6) p/n = 20/5 = 4 ∈ N and n/3 = 5/3 0006∈ N are met. According to Table 2.7, when
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
Windings of Electrical Machines
111
n is an odd number, n = 5 ∈ Nodd , a first-grade fractional slot winding is created. When t = p/n = 4, its parameters are Q ∗ = Q/t = 168/4 = 42,
p ∗ = n = 5,
t ∗ = 1.
The diagram of coil groups, according to Equation (2.101), qav nm = qp ∗ m = Q ∗ /2, consists of p * m = nm = 5 × 3 = 15 groups of coils. The coil groups and the phase order are selected according to Table 2.8: qk Phase
2 U
1 V
2 W
1 U
1 V
2 W
1 U
2 V
1 W
1 U
2 V
1 W
2 U
1 V
1 W
m = 3 cycles of coil groups with n = 5 consequent numbers of coils qk yield a symmetrical distribution of coil groups for single-phase coils. qk
q1
Phase U Phase V Phase W
2
q2
q3
q4
q5
q1
q2
1
q3
q4
q5
1
1
q1
q3
1
1
q4
2
2
q5
2
2
2
q2
1
1
1
1
In each phase, there is one group of coils qn . The average number of slots per pole and phase qav of the coil group is written according to Equation (2.100) using the local qk value order of phase U 10001 1 2 qk = (2 + 1 + 1 + 1 + 2) = 1 = q. 5 k=1 5 5 5
We now obtain a coil group diagram according to Figure 2.31 and a winding phasor diagram according to Figure 2.32. q
2
1
2
1
1
2
1
2
1
1
2
1
2
1
1
phase
U
V
W
U
V
W
U
V
W
U
V
W
U
V
W
k
1 2
5 3
4
6
7 8
11 9
10
12
13 14
15 16
19 21 17 18
20 22
25 23 24
26
29 27 28
30
31 32
33 35 34 36
37 38
39 40
41 42
Figure 2.31 Coil group diagram of a single-layer fractional slot winding. Q* = Q/t = 168/4 = 42, p* = n = 5, t* = 1
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
112
Design of Rotating Electrical Machines
–U +V
17
34
9 26 1 18 35
10
27
42
2
25
19 36
8 33
–W
11
16 41
28
24
20
3
+W
37
7 32
12 29
15 40
4 21
23 6
31 +U
14 39 22 5 30
13
38 –V
(a)
(b)
Figure 2.32 (a) Voltage phasor diagram of a first-grade, single-layer base winding. p* = 5, m = 3, Q = Q* = 42, q = 12/5, t* = 1, α u = 5α z = 426/7◦ , α z = 8 47 ◦ . The phasors of the phase U are illustrated with a solid line, (b) the phasors of phase U are turned to form a bunch of phasors for the winding factor calculation and the symmetry line
When calculating the winding factor for this winding, the following parameters are obtained for the voltage phasor diagram: Number of layers in the voltage phasor diagram Number of radii Slot angle Phasor angle Number of phasors skipped in the numbering Number of phasors for one phase
t* = 1 Q = Q* /t* = 42 αu = 360◦ p ∗ /Q ∗ = 360◦ × 5/42 = 426/7◦ αz = 360◦ t ∗ /Q ∗ = 360◦ × 1/42 = 84/7◦ (p* /t* ) − 1 = 5 − 1 = 4 Z = Q /m = 42/3 = 14
The voltage phasor diagram is illustrated in Figure 2.32. The winding factor may now be calculated using Equation (2.16):
kwv =
νπ Z 0001 2 cos αρ . Z ρ=1
sin
The number of phasors Z = 14 for one phase and the angle between the phasors in the bunch is αz = 84/7◦ . The fundamental winding factor is found after having determined the
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
Windings of Electrical Machines
113
angles α ρ between the phasors and the symmetry line, hence
000e
◦000e ◦000e ◦000e ◦000e cos 4 · 84/7 + cos 3 · 84/7 + 2 cos 2 · 84/7 + 2 cos 84/7 + 1 · 2 kw1 = 14 = 0.945. As a result of the winding design based on the zone distribution given above, we have a winding in which, according to the voltage phasor diagram, certain coil sides are transferred to the zone of the neighbouring phase. By exchanging the phasors 19–36, 5–22 and 8–33 we would also receive a functioning winding but there would be less similar coils than in the winding construction presented above. This kind of winding would lead to a technically inferior solution, in which undivided and divided coil groups would occur side by side. Such winding solutions are favourable when the variation of coil arrangements is kept to a minimum. This way, the best shape of the end winding is achieved. Example 2.19: Is it possible to design a winding with (a) Q = 72, p = 5, m = 3, (b) Q = 36, p = 7, m = 3, (c) Q = 42, p = 3, m = 3? Solution: (a) Using Table 2.6, we check the conditions of symmetry for fractional slot windings. The number of slots per pole and phase is q = z/n = 72/(2 × 5 × 3) = 22/5, z = 12 and n = 5, which are not mutually divisible. As p/n = 5/5 = 1 ∈ N a single-layer winding should be made and as n/m = 5/3 0006∈ N the symmetry conditions are all right. And as n ∈ Nodd we will consider a first-grade base winding as follows: Q ∗ = 72, That is, qav = qk Phase
3 U
2 V
1 5
p ∗ = 5,
m = 3,
q = 22/5 .
(3 + 2 + 2 + 2 + 3) = 2 25 = q. This is a feasible winding. 2 W
2 U
3 V
3 W
2 U
2 V
2 W
3 U
3 V
2 W
2 U
2 V
3 W
(b) The number of slots per pole and phase is q = z/n = 36/(2 · 7 · 3) = 6/7, z = 6 and n = 7, which are not mutually divisible. As p/n = 7/7 = 1 ∈ N a single-layer winding can be made, and as n/m = 7/3 0006∈ N the symmetry conditions are all right. And as n ∈ Nodd we will consider a first-grade base winding as follows: Q ∗ = 36,
p ∗ = 7,
m = 3,
q = 6/7 .
qk 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 Phase U V W U V W U V W U V W U V W U V W U V W
qav =
1 7
(1 + 1 + 1 + 0 + 1 + 1 + 1) = 67 .
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
114
Design of Rotating Electrical Machines
The number of slots per pole and phase can thus also be less than one, q < 1. In such a case, coil groups with no coils occur. These nonexistent coil groups are naturally evenly distributed in all phases. (c) The number of slots per pole and phase is q = z/n = 42/(2 · 3 · 3) = 2 13 , z = 7 and n = 3, which are mutually divisible, the condition n/3 0006∈ N is not met, and the winding is not symmetric. If, despite the nonsymmetrical nature, we considered a first-grade base winding, we should get a result as follows: Q ∗ = 42,
qk Phase
2 U
2 V
p ∗ = 3,
3 W
m = 3,
2 U
q = 21/3 .
2 V
3 W
2 U
2 V
3 W
We can see that all coil groups with three coils now belong to the phase W. Such a winding is not functional.
Example 2.20: Create a winding with Q = 60, p = 8, m = 3. Solution: The number of slots per pole and phase is q = 60/(2 · 8 · 3) = 1 14 . z = 5, n = 4. The largest common divider of Q and p is t = 2p/n = 16/4 = 4. As t also indicates the number of layers in the phasor diagram we get Q = Q/t = 60/4 = 15 which is the number of radii in the phasor diagram in one layer. Q /m = 15/3 = 5 ∈ Nodd . The conditions of symmetry p/n = 8/4 = 2 ∈ N and n/3 = 4/3 0006∈ N are met. Because n = 4 ∈ Neven , we have according to the parameters in Table 2.7 a second-grade, single-layer fractional slot winding. We get the base winding parameters Q ∗ = 2Q/t = 2 · 60/4 = 30,
p ∗ = n = 4,
t ∗ = 2.
The second-grade, single-layer fractional slot windings are designed like the first-grade windings. However, the voltage phasor diagram is now doubled. The coil group diagram of the base winding comprises p* × m = n × m = 4 × 3 = 12 coil groups. The coil group phase diagram is selected as follows:
qk Phase
2 U
1 V
1 W
1 U
2 V
1 W
1 U
1 V
2 W
1 U
1 V
1 W
A coil group diagram for the base winding corresponding to this case is illustrated in Figure 2.33.
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
Windings of Electrical Machines
qk ph as e
115
2
1
1
1
2
1
1
1
2
1
1
1
U
V
W
U
V
W
U
V
W
U
V
W
U
1 5 11 15 21 25 31 35 slots 2 3 4 6 7 8 9 10 12 13 14 16 17 18 19 20 22 23 24 26 27 28 29 30 32 33 34 36 ... base winding
base winding
Figure 2.33 Coil group diagram of a base winding for a single-layer fractional slot winding p = 8, m = 3, Q = 60, q = 11/4
A voltage phasor diagram for the base winding is illustrated in Figure 2.34: Number of layers in the voltage phasor diagram Number of radii Slot angle Phasor angle Number of phasors skipped in the numbering
t* = 2 (second-grade winding) Q = Q* /t* = 30/2 = 15 α u = 360◦ p* /Q* = 360◦ × 4/30 = 48◦ α z = 360◦ t* /Q* = 360◦ × 2/30 = 24◦ (p* /t* ) − 1 = 4/2 − 1 = 1
The number of phasors Z = 10 for one phase and the angle between the phasors in the bunch is α z = 24◦ . After having found the angles α ρ with respect to the symmetry line, the fundamental winding factor may be calculated using Equation (2.16) kw1 =
(2 cos (6◦ ) + 2 cos (6◦ + 12◦ ) + cos (6◦ + 24◦ )) · 2 = 0.951. 10
2.12.2 Double-Layer Fractional Slot Windings In double-layer windings, one of the coil sides of each coil is in the upper layer of the slot, and the other coil side is in the bottom layer. The coils are all of equal span. Consequently, when the positions of the left coil sides are defined, the right sides also will be defined. Here doublelayer fractional slot windings differ from single-layer windings. Let us now assume that the left coil sides are positioned in the upper layer. For these coil sides of the upper layer, a voltage phasor diagram of a double-layer winding is valid. Contrary to the voltage phasor diagram illustrated in Figure 2.34, there is only one layer in the voltage phasor diagram of the doublelayer fractional slot winding. Therefore, the design of a symmetrical double-layer fractional
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
116
Design of Rotating Electrical Machines
+V –U
16
23
24
30 17 15
22
8
1
9 2
7
–W
14
29
–W
3
6
18
+W
11
13
21
25
10
5
12
4 26
28 19 20
27
+U
–V (a)
(b)
Figure 2.34 (a) Voltage phasor diagram of the base winding p* = 4, Q* = 30, t* = 2, Q = 15, α u = 2α z = 48◦ of a single-layer fractional slot winding p = 12, m = 3, Q = 60, q = 1/4 . The phasors belonging to the phase U are illustrated with a solid line. (b) The phasors of the phase U are turned for calculating the winding factor and for illustrating a symmetrical bunch of phasors
slot winding is fairly straightforward with a voltage phasor diagram of a base winding. Now, symmetrically distributed closed bunches of phasors are composed of the phasors of single phases. This phasor order produces minimum divergence when compared with the current linkage distribution of the integral slot winding. First, we investigate first-grade, double-layer fractional slot windings. It is possible to divide the phasors of such a winding into bunches of equal size; in other words, into zones of equal width.
Example 2.21: Design the winding previously constructed as a single-layer winding Q = 168, p = 20, m = 3, q = 12/5 now as a double-layer winding. Solution: We have a fractional slot winding for which the divider n = 5. The conditions of symmetry (Table 2.6) p/n = 20/5 = 4 ∈ N and n/3 = 5/3 0006∈ N are met. According to Table 2.7, if n is an odd number n = 5 ∈ Nodd , a first-grade fractional slot winding is created. The parameters of the voltage phasor diagram of such a winding are: Number of layers in the voltage phasor diagram Number of pole pairs in the base winding Number of radii Slot angle Phasor angle Number of phasors skipped in the numbering
t* = 1 p* = 5 Q = Q* /t* = 42 α u = 360◦ p* /Q* = 360◦ ×5/42 = 42 67 ◦ α z = 360◦ t* /Q* = 360◦ ×1/42 = 8 47 ◦ (p* /t* ) − 1 = 5 − 1 = 4
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
Windings of Electrical Machines
+V 42 25
αz
αu
–W
17
34
117
–U 9 26 1 18 35 10 27 2 19 36 11 28 3 +W 20 37 12 29 4 21
8 33 16 41 24 7 32 15 40 23
1
6
31 14 39 22 5 30 13 +U
U2
U1
U1–U5 U2–U6 U6 U5
38 5
–V
(a)
(b)
Figure 2.35 (a) Voltage phasor diagram of a first-grade, double-layer base winding p* = 5, m = 3, Q = Q* = 42, q ∗ = 12/5, t* = 1, α u = 5α z = 426 /7 ◦ , α z = 84 /7 ◦ . (b) A couple of examples of coil voltages in the phase U
Since t* = 1, the number of radii Q is the same as the number of phasors Q* , and we obtain Q* /m = 42/3 = 14 phasors for each phase, which are then divided into negative Z − and positive Z + phasors. The number of phasors per phase in the first-grade base winding is Q* /m = Q/mt ∈ Neven . In normal cases, there is no zone variation, and the phasors are evenly divided into positive and negative phasors. In the example case, the number of phasors of both types is seven, Z − = Z + = 7. By employing a normal zone order −U, +W, −V, +U, −W, +V we are able to divide the voltage phasor diagram into zones with seven phasors in each, Figure 2.35. When the voltage phasor diagram is ready, the upper layer of the winding is set. The positions of the coil sides in the bottom layer are defined when an appropriate coil span is selected. For fractional slot windings, it is not possible to construct a full-pitch winding, because q 0006∈ N. For the winding in question, the full-pitch coil span yQ of a full-pitch winding would be y in slot pitches
y = yQ = mq = 3 · 1
1 2 =4 ∈ / N, 5 5
which is not possible in practice because the step has, of course, to be an integer number of slot pitches. Now the coil span may be decreased by yv = 1/5. The coil span thus becomes an integer, which enables the construction of the winding: 2 1 y = mq − yv = 3 · 1 − = 4 ∈ N. 5 5
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
118
Design of Rotating Electrical Machines
1
5
10
15
20
25
U2
30
35
40 42 1
...U1
Figure 2.36 Base winding of a fractional slot winding. p = 20, m = 3, Q = 168, q = 12/5. The U1 end of the base winding is placed in slot 40
Double-layer fractional slot windings are thus short-pitched windings. When constructing a two-layer fractional slot winding, there are two coil sides in each slot. Hence, we have as many coils as slots in the winding. In this example, we first locate the U-phase bottom coil side in slot 1. The other coil side is placed according to the coil span of y = 4 at a distance of four slots in the upper part of slot 5. Similarly, coils run from 2 to 6. The coils to be formed are 1–5, 18–22, 35–39, 10–14, 27–31, 2–6 and 19–23. Starting from the +U zone, we have coils 22–26, 39–1, 14–18, 31–35, 6–10, 23–27 and 40–2. Now, six coil groups with one coil in each and four coil groups with two coils in each are created in each phase. The average is q=
2 1 14 =1 . (6 · 1 + 4 · 2) = 10 10 5
A section of the base winding of the constructed winding is illustrated in Figure 2.36. Next, the configuration of a second-grade, double-layer fractional slot winding is investigated. Because now Q /m = Q* /m = Q/mt ∈ Nodd , a division Z − = Z + is not possible. In other words, all the zones of the voltage phasor diagram are not equal. The voltage phasor diagram can nevertheless be constructed so that phasors of neighbouring zones are not located inside each other’s zones.
Example 2.22: Create a second-grade, double-layer fractional slot winding with Q = 30, p = 4, m = 3. Solution: The number of slots per pole per phase is written as q=
30 = 21/2. 2·2·3
As n = 2 ∈ Neven , we have a second-grade, double-layer fractional slot winding. Because t = 2p/n = 2, its parameters are Q ∗ = Q/t = 30/2 = 15, p ∗ = n/2 = 2/2 = 1, t ∗ = 1.
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
Windings of Electrical Machines
119
1 2
15 14
–U
+V
3
4
13 +W –W
5
12
11
6
10
–V
+U 9
7
8
Figure 2.37 Voltage phasor diagram of a second-grade, double-layer fractional slot winding. p* = 1, m = 3, q = 21/2, Q = Q* /t* = 15, α u = 360◦ p* /Q* = 360◦ /15 = 24◦ , α z = 360◦ t* /Q* = 360◦ /15 = 24◦ , (p* /t* ) − 1 = 0
This winding shows that the base winding of a second-grade, double-layer fractional slot winding can only be the length of one pole pair. The parameters of the voltage phasor diagram are: Number of layers in the voltage phasor diagram Number of radii Slot angle Phasor angle Number of phasors skipped in the numbering
t* = 1 = p* Q = Q* /t* = 15 α u = 360◦ p* /Q* = 360◦ /15 = 24◦ α z = 360◦ t* /Q* = 360◦ /15 = 24◦ (p* /t* ) − 1 = 0
For each phase, we obtain Q /m = Q* /m = 15/3 = 5 phasors. This does not allow an equal number of negative and positive phasors. If a natural zone variation is employed, we have to set either Z + = Z − + 1 or Z + = Z − − 1. In the latter case, we obtain Z − = 3 and Z + = 2. With the known zone variation, electrical zones are created in the voltage phasor diagram, for which the number of phasors varies: Z − = 3 phasors in zone −U, Z + = 2 phasors in zone +W, Z − = 3 phasors in zone −V, and so on, Figure 2.37. When the coil span is decreased by yv = 1/2, the coil span becomes an integer y = mq − yv = 71/2 − 1/2 = 7.
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
120
Design of Rotating Electrical Machines
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
U1
U2
(a)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
(b)
U1
U2
Figure 2.38 Winding diagram of a double-layer fractional slot winding. p = 2, m = 3, Q = 30, q = 21/2. (a) Lap winding, (b) wave winding. To simplify the illustration, only a single phase is shown
The winding diagram of Figure 2.38 shows that all the positive coil groups consist of three coils, and all the negative coil groups consist of two coils, which yields an average of q = 2 1/2 . Since all negative and all positive coil groups comprise an equal number of coils, the winding can be constructed as a wave winding. A wave is created that passes through the winding three times in one direction and two times in the opposite direction. The waves are connected in series to create a complete phase winding.
Example 2.23: Create a fractional slot winding for a three-phase machine, where the number of stator slots is 12, and the number of rotor poles is 10, Figure 2.39. Solution: The number of slots per pole and phase is q = 12/(3 × 10) = 2/5 = z/n = 0.4. Hence, n = 5. We should thereby find a base winding of the first kind. According to Table 2.6, p/n ∈ N. In this case 5/5 ∈ N. In a three-phase machine n/m 0006∈ N → n/3 0006∈ N. Now 5/3 0006∈ N and the symmetry conditions are met. Let us next consider the parameters in Table 2.7. The largest common divider of Q and p is t = p/n = 5/5 = 1, Q/tm = 12/(1 × 3) = 4 which is an even number. The slot angle in the voltage phasor diagram is αu = nαz = n
2π t, Q
αu = 5αz = 5
2π 5π 1= . 12 6
The number slots in the base windings is Q* = Q/t = 12 and the number of pole pairs in the base winding is p/t = n = 5. The winding may be realized as either a single- or double-layer winding, and in this case a double-layer winding is found. In drawing the
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
Windings of Electrical Machines
–U 8 +W
–U 1
3
11
+V
4 –W 9 –W
5 12 –V
11 –W
12 –V –V
+U
+V –U
2 +U +U
10+W`+W
α = 30
3
–W 9 +U
–V
+U –V 7
+V +V 6
U8 –U 7
–U9
–W –W 4
–U –U
U8 o
–U +W
+V
8
2 7 +U
top layer bottom layer
1
+V 6
+W 10
–V
121
–U3 –U1
+W 5
o
kw1=
2cos 30 + 2 4
= 0.933
U2 U2
–U (a)
(b)
(c)
Figure 2.39 (a) Phasors of a 12-slot, 10-pole machine, (b) the double-layer winding of a 12-slot, 10-pole machine, (c) the phasors of the phase U for the calculation of the winding factor
voltage phasor diagram, the number of phasors skipped in the numbering is (p* /t* ) − 1= ((p/t)/t* ) − 1 = ((5/1)/1) − 1 = 4. First, 12 phasors are drawn (a number of Q , when Q = Q* /t* ). Phasor 1 is positioned to point straight upwards, and the next phasor, phasor 2, is located at an electrical angle of 360 × p/Q from the first phasor, in this case 360 × 5/12 = 150◦ . Phasor 3 is, again, located at an angle of 150◦ from phasor 2 and so on. The first coil 1–2 (−U, +U) will be located on the top layer of slot 1 and on the bottom layer of slot 2. The other coil (+U, −U) 2–3 will be located on the top layer of slot 2 and on the bottom layer of slot 3. The phase coils are set in the order U, −V, W, −U, V, −W. In the example, a single-phase zone comprises four slots, and thus a single winding zone includes two positive and two negative slots. Based on the voltage phasor diagram of Figure 2.39a and the winding construction of Figure 2.39b, the fundamental winding factor of the machine can be solved, Figure 2.39c. First, the polarity of the coils of phase U in Figure 2.39b is checked and the respective phasors are drawn. In slots 1, 2 and 3, there are four coil sides of the phase U in total, and the number of phasors will thus be four. Now the angles between the phasors and their cosines are calculated. This yields a winding factor of 0.933.
Example 2.24: Create a fractional slot winding for a three-phase machine, in which the number of slots is 21, and the number of rotor poles is 22, Figure 2.40. Solution: The number of slots per pole and phase is thus only q = 21/66 = z/n = 7/22 = 0.318. As n ∈ Neven , we have a fractional slot winding of the second grade. Although a winding of this kind meets the symmetry conditions, it is not an ideal construction, because in the winding all the coils of a single phase are located on the same side of the machine. Such a coil system may produce harmful unbalanced magnetic forces in the machine. In Figure 2.40a, 21 phasors are drawn (a number of Q , when Q = Q* /t* ). Phasor 1 is placed at the top and the next phasor at a distance of 360 × p/Q from it. In this example, the distance is thus 360 × 11/21 = 188.6◦ . Phasor 2 is thus set at an angle of 188.6◦ from
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
122
Design of Rotating Electrical Machines
+U –V
+V +V 21 –V 20 –V 19 +V +V 18
–U –U 1
+U +U 2
–U –U
+U +U
3 4
–U –U 5
–V –V 17 +V +V
6 +U +U
16
–V
7 –U +W
15
8
–W –W
9 –V 14 –W +W 13 12 11 10 –W +V +W +W –W +W +W –W –W +W
+V –U +V 20 1 18 +V 16
–U 3
–U 5 –U 7 +W
–W 14
9
–W 12
11 +W 13
–W 10 8 –W
15 6
+U
4 +U
(a)
2 +U (b)
17 19 –V 21 –V –V
+W
–V k w1 = 0.956
(c)
Figure 2.40 (a) Winding of a 21-slot, 22-pole machine, (b) the phasors of a 21-slot, 22-pole machine and (c) the phasors of the phase U for the calculation of the winding factor
phasor 1. The procedure is repeated with phasors 3, 4, . . . . The phase coils are set in the order −W, U, −V, W, −U, V. Here a single phase consists of seven slots, and therefore we cannot place an equal number of positive and negative coils in one phase. In one phase, there are four positive and three negative slots. Note that we are now generating just the top winding layer, and when the bottom winding is also inserted, we have an equal number of positive and negative coils. In Figure 2.40b, the coils are inserted in the bottom layer of the slots according to the phasors of Figure 2.40a. Phasor 1 of Figure 2.40a is −U, and it is located in the top layer of slot 1. Correspondingly, phasor 2, +U, is mounted in the top layer of slot 2. The bottom winding of the machine repeats the order of the top winding. When the top coil sides are transferred by a distance of one slot forward and the ± sign of each one is changed, a suitable bottom layer is obtained. The first coil of the phase U will be located in the bottom of slot 21 and on the surface of slot 1, and so on. Table 2.10 contains some parameters of double-layer fractional slot windings, when the number of slots q ≤ 0.5 (Salminen, 2004).
2.13 Single- and Two-Phase Windings The above three-phase windings are the most common rotating-field windings employed in poly-phase machines. Double- and single-phase windings, windings permitting a varying number of poles, and naturally also commutator windings are common in machine construction. Of commutator AC machines, nowadays only single-phase-supplied, series-connected commutator machines occur, for instance as motors of electric tools. Poly-phase commutator AC machines will eventually disappear as the power electronics enables easy control of the rotation speed of different motor types. Since there is no two-phase supply network, two-phase windings occur mainly as auxiliary and main windings of machines supplied from a single-phase network. In some special cases, for instance small auxiliary automotive drives such as fan drives, two-phase motors are also
24
21
18
15
b
a
0.866 0.5
0.866 0.25 —b 0.375 0.866 0.5
—a 0.5 0.2 —b 0.3 0.933 0.4 0.866 0.5
10
0.866 0.5
—a
0.866 0.25 —a
—a
12 0.5 0.143 0.617 0.214 0.933 0.286 —b 0.357 0.902 0.429 0.866 0.5
14 0.866 0.125 0.328 0.188 0.866 0.25 —b 0.313 0.945 0.375 0.89 0.438 0.866 0.5
16
Not recommended, because the denominator n (q = z/n) is an integral multiple of the number of phases m. Not recommended as single base winding because of unbalanced magnetic pull.
0.866 0.5
8
6 0.866 0.1 0.328 0.15 0.5 0.2 0.866 0.25 0.945 0.3 —b 0.35 0.933 0.4
20
0.5 0.091 0.617 0.136 0.25 0.182 0.711 0.227 0.902 0.273 —b 0.318 0.949 0.364
22
—a
0.866 0.25 —a
—a
0.866 0.125 —a
—a
24
0.5 0.077 0.945 0.115 0.25 0.154 0.39 0.192 0.74 0.231 0.89 0.269 0.949 0.308
26
16:47
12
9
kw1 q kw1 q kw1 q kw1 q kw1 q kw1 q kw1 q
4
2p
November 25, 2008
6
Qs
Number of poles
Table 2.10 Winding factors kw1 of the fundamental and numbers of slots per pole and phase q for double-layer, three-phase fractional slot concentrated windings (q ≤ 0.5). The boldface figures are the highest values in each column. Reproduced by permission of Pia Salminen
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen Printer Name: Yet to Come
Windings of Electrical Machines 123
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
124
Design of Rotating Electrical Machines
used in power electronic supply. A two-phase winding can also be constructed on the rotor of low-power slip-ring asynchronous motors. As is known, a two-phase system is the simplest possible winding that produces a rotating field, and it is therefore most applicable to rotatingfield machines. In a two-phase supply, however, there exist time instants when the current of either of the windings is zero. This means that each of the windings should alone be capable of creating as sinusoidal a supply as possible to achieve low harmonic content in the air gap and low losses in the rotor. This makes the design of high-efficiency two-phase winding machines more demanding than three-phase machines. The design of a two-phase winding is based on the principles already discussed in the design of three-phase windings. However, we must always bear in mind that in the case of a reduced poly-phase system, when constructing the zone distribution, the signs of the zones do not vary in the way that they do in a three-phase system, but the zone distribution will be −U, −V, +U, +V. In a single-phase asynchronous machine, the number of coils of the main winding is usually higher than the number of coils of the auxiliary winding. Example 2.25: Create a 5/6 short-pitched, double-layer, two-phase winding of a small electrical machine, Q = 12, p = 1, m = 2, q = 3. Solution: The required winding is illustrated in Figure 2.41, where the rules mentioned above are applied.
1
U1
2
3
4
V1
5
6
7
U2
8
9
10
11
12
1
2
3
4
V2
Figure 2.41 Symmetrical 5/6 short-pitched double-layer, two-phase winding, Q = 12, p = 1, m = 2, q = 3
When considering a single-phase winding, we must bear in mind that it does not, as a stationary winding, produce a rotating field, but a pulsating field. A pulsating field can be presented as a sum of two fields rotating in opposite directions. The armature reaction of a single-phase machine thus has a field component rotating against the rotor. In synchronous machines, this component can be damped with the damper windings of the rotor. However, the damper winding copper losses are significant. In single-phase squirrel cage induction motors, the rotor also creates extra losses when damping the negative-sequence field. Also the magnetizing windings of the rotors of nonsalient-pole machines belong to the group of single-phase windings, as exemplified at the beginning of the chapter. If a
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
Windings of Electrical Machines
125
single-phase winding is installed on the rotating part of the machine it, of course, creates a rotating field in the air gap of the machine contrary to the pulsating field of a single-phase stator winding. Large single-phase machines are rare, but for instance in Germany, single-phase synchronous machines are used to feed the supply network of 16 23 Hz electric locomotives. Since there is only one phase in such a machine, there are only two zones per pole pair, and the construction of an integral slot winding is usually relatively simple. In these machines, damper windings have to cancel the negative-sequence field. This, however, obviously is problematic because lots of losses are generated in the damper. The core principle also in designing single-phase windings is to aim at as sinusoidal a distribution of the current linkage as possible. This is even more important in single-phase windings than in three-phase windings, the current linkage distribution of which is by nature closer to ideal. The current linkage distribution of a single-phase winding can be made to resemble the current linkage distribution of a three-phase winding instantaneously in a position where a current of one phase of a three-phase winding is zero. At that instant, a third of the slots of the machine are in principle currentless. The current linkage distribution of a single-phase machine can best be made to approach a sinusoidal distribution when a third of the slots are left without conductors, and a different number of turns of coil are inserted in each slot. The magnetizing winding of the nonsalient-pole machine of Figure 2.3 is illustrated as an example of such a winding. Example 2.26: Create various kinds of zone distributions to approach a sinusoidal current linkage distribution for a single-phase winding with m = 1, p = 1, Q = 24, q = 12. Solution: Figure 2.42 depicts various methods to produce a current linkage waveform with a single-phase winding. (a)
current linkage
(b)
(c)
–U
+U
–U
(a)
(b) –U
+W
–V
+U
–W
+V
(c)
Figure 2.42 Zone diagram of a single-phase winding p = 1, Q = 24, q = 12 and current linkage distributions produced by different zone distributions. (a) A single-phase winding covering all slots. (b) A two-thirds winding, with the zones of a corresponding three-phase winding. The three phase zones +W and −W are left without conductors. The distribution of the current linkage is better than in the case (a). (c) A two-thirds short-pitched winding, producing a current linkage distribution closer to an ideal (dark stepped line)
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
126
Design of Rotating Electrical Machines
2.14 Windings Permitting a Varying Number of Poles Here, windings permitting a variable pole number refer to such single- or poly-phase windings that can be connected via terminals to a varying number of poles. Windings of this type occur typically in asynchronous machines, when the rotation speed of the machine has to be varied in a certain ratio. The most common example of such machines is a two-speed motor. The most common connection for this kind of arrangement is a Lindstr¨om–Dahlander connection that enables alteration of the pole number of a three-phase machine in the proportion of 1 to 2. Figure 2.43 illustrates the winding diagram of a single phase of a 24-slot machine. It can be arranged as a double-layer diamond winding, which is a typical Dahlander winding. Now the smaller number of pole pairs is denoted by p and the higher by p , where p = 2p . The winding is divided into two sections U1–U2 and U3–U4, both of which consist of two coil groups with the higher number of poles.
U4
(a)
1
2
3
4
5
6
7
8
9
U1 U
V
U1
U3
W
U0
V0
W4
1
2
3
4
5
6
7
8
W
(d) U1
V
U3
flux going +W +U
W
U0 V0
V
U
V4 W1
U4
U2
U0
V1
W0 W4
U1
V4 W
U4
U2
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
9
W1
W0
U4
(c)
V1
U0
(b)
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
V
flux coming
+V +W +U
+V
+W +U
+V +W
+U +V +W
+U (e) zone plan for p' = 4
-V
-W
+U
-U
-W +V
-V
-W -U
+W
-U
-V -V
-W +U
-U
-V
-W +V
-W
-U
-U +W
-V
-W
-V (f) zone plan for p' = 2
+V
-U
+W
-V
+U
-W
+V
-U
+W
-V
+U
-W
Figure 2.43 Principle of a Dahlander winding. The upper connection (a) produces eight poles and the lower (c) four poles. The number of poles is shown by the flux arrowheads and tails (b) and (d) equivalent connections. When the number of coil turns of the phase varies inversely proportional to the speed, the winding can be supplied with the same voltage at both speeds. Network connections are U, V and W. The figure illustrates only a winding of one phase. In Figure 2.43d between U1 and U4 there is the connection W, between W4 and W1 there is U and between V1 and V4 there is V to keep the same direction of rotation; (e) and (f) zone plans for p = 4 and p = 2
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
Windings of Electrical Machines
127
The Dahlander winding is normally realized for the higher pole pair number as a doublelayer, double-zone-width winding. The number of coil groups per phase is equal to p , which is always an even number. Deriving a double-layer, integral slot, full-pitch Dahlander winding (short-pitch or fractional slot Dahlander windings are not possible at all) starts by creating mp negative zones with a double width. All the negative zones −U, −V, −W are located in the top layer and all the positive zones in the bottom layers of slots. The phase U is followed by the winding V at a distance of 120◦ . For a number of pole pairs p = 4, the winding V has to be placed at a distance 24 Q τu = τu = 2τu 3 p 3·4 from the winding U. The winding V thus starts from slot 3 in the same way as the winding U starts from slot 1. The winding W starts then from slot 5. When considering the pole pair number p = 2, we can see that the winding V is placed at a distance Q 24 τu = 4τu τu = 3 p 3·2 from the winding U and thus starts from slot 5, and the winding W from slot 9. External connections have to be arranged to meet these requirements. At its simplest, the shift of the above-mentioned pole pair from one winding to another is carried out according to the righthand circuit diagrams. To keep the machine rotating in the same direction, the phases U, V and W have to be connected according to the illustration. There is also another method to create windings with two different pole numbers: pole amplitude modulation (PAM) is a method with which ratios other than 1 : 2 may be found. PAM is based on the following trigonometric equation: sin pb α sin pm α =
1 [cos ( pb − pm ) α − cos ( pb + pm ) α] . 2
(2.103)
The current linkage is produced as a function of the angle α running over the perimeter of the air gap. A phase winding might be realized with a base pole pair number pb and a modulating pole pair number pm . In practice, this means that if for instance pb = 4 and pm = 1, the PAM method produces pole pairs 4 − 1 or 4 + 1. The winding must be created so that one of the harmonics is damped and the other dominates.
2.15 Commutator Windings A characteristic of poly-phase windings is that the phase windings are, in principle, galvanically separated. The phase windings are connected via terminals to each other, in a star or in a polygon. The armature winding of commutator machines does not start or end at terminals. The winding comprises turns of conductor soldered as a continuum and wound in the slots of the rotor so that the sum of induced voltages is always zero in the continuum. This is possible if the sum of slot voltages is zero. All the coil sides of such a winding can be connected in series to form a continuum without causing a current to flow in the closed ring as a result of
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
128
Design of Rotating Electrical Machines
1
2
1
3
(a)
2
1
4
4
2 1
(b)
3
3
3
5
7
9
2
4
6
8
Figure 2.44 Two examples of commutator winding coil sides mounted in the slots. (a) Two coil sides in a slot, one side in a layer, u = 1. (b) Four coil sides in a slot, two coil sides in a layer, u = 2. Evennumbered coil sides are located at the bottom of the slots. There has to be a large enough number of coils and commutator segments to keep the voltage between commutator segments small enough
the voltages in the coil sides. An external electric circuit is created by coupling the connection points of the coils to the commutator segments. A current is fed to the winding via brushes dragging along the commutator. The commutator switches the coils in turns to the brushes thus acting as a mechanical inverter or rectifier depending on the operating mode of the machine. This is called commutating. In the design of a winding, the construction of a reliable commutating arrangement is a demanding task. Commutator windings are always double-layer windings. One coil side of each coil is always in the upper layer and the other in the bottom layer approximately at the distance of a pole pair from each other. Because of problems in commutating, the voltage difference between the commutator segments must not be too high, and thus the number of segments and coils has always to be high enough. On the other hand, the number of slots is restricted by the minimum width of the teeth. Therefore, usually more than two coil sides are placed in each slot. In the slot of the upper diagram of Figure 2.44, there are two coil sides, and in the lower diagram the number of coil sides is four. The coil sides are often numbered so that the sides of the bottom layer are even numbers, and the slots of the upper layer are odd numbers. If the number of coils is zc , 2zc coil sides have to be mounted in Q slots, and thus there are 2u = 2zc /Q sides in a slot. The symbol u gives the number of coil sides in one layer. In each side, there are N v conductors. The total number of conductors z in the armature is z = Qz Q = 2u Nv Q = 2z c Nv . Here Q is the number of slots, zQ is the number of conductors in a slot, u is the number of coil sides in a layer, zc is the number of coils, N v is the number of conductors in a coil side, 2uN v = zQ , because z Q = z/Q = 2u Nv Q/Q = 2u Nv , see (2.104).
(2.104)
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
Windings of Electrical Machines
129
q 11 10
13
N
12 15 14 17 16
7
9 8
6 5 4
8 Ο
9 19 18
10 20 11 21
23-6
7 4
2
5 2
29- 12
S 19- 2
3
1 32 1 16 15 30 31
22 12 13 14 28 29 26 24 23 27 25
31- 14
d 17- 32
1-16
15- 30
3-18
13-2 8 11- 26
(a)
27- 10
21- 4
6
3
25- 8
5-20 9-24
7-22
ω =Ω
(b)
Figure 2.45 (a) Principle of a two-pole, double-layer commutator armature. The armature rotates at an angular speed Ω clockwise generating an emf in the conductors in the slots. The emf tends to create the current directions illustrated in the figure. (b) A coil voltage phasor diagram of the armature. It is a full-pitch winding, which does not normally occur as a commutator winding. Nevertheless, a full-pitch winding is given here as a clarifying example. Q = 16, u = 1 (one coil side per layer)
Commutator windings may be used both in AC and DC machines. Multi-phase commutator AC machines are, however, becoming rare. DC machines, instead, are built and used also in the present-day industry even though DC drives are gradually being replaced by power electronic AC drives. Nevertheless, it is advisable to look briefly also at the DC windings. The AC and DC commutator windings are in principle equal. For simplicity, the configuration of the winding is investigated with the voltage phasor diagram of a DC machine. Here, it suffices to investigate a two-pole machine, since the winding of machines with multiple poles is repeated unchanged with each pole pair. The rotor of Figure 2.45, with Q = 16, u = 1, is assumed to rotate clockwise at an angular speed Ω in a constant magnetic field between the poles N and S. The magnetic field rotates in the positive direction with respect to the conductors in the slots, that is counterclockwise. Now, a coil voltage phasor diagram is constructed for a winding, in which we have already calculated the difference of the coil side voltages given by the coil voltage phasor diagram. By applying the numbering system of Figure 2.44, we have in slot 1 the coil sides 1 and 32, and in slot 9 the coil sides 16 and 17. With this system, the coil voltage phasor diagram can be illustrated as in Figure 2.45b. Figure 2.45 shows that if the induced emf decides the direction of the armature current, the produced torque is opposite to the direction of rotation (counterclockwise in Figure 2.45), and mechanical power has to be supplied to the machine, which is acting as a generator. Now, if the armature current is forced to flow against the emf with the assistance of an external voltage or current source, the torque is in the direction of rotation, and the machine acts as a motor. There are zc = Qu = 16 × 1 = 16 coils in the winding, the ends of which should next be connected to the commutator. Depending on the way they are connected, different kinds of windings are produced. Each connection point of the coil ends is connected to the commutator. There are two main types of commutator windings: lap windings and wave windings. A lap winding has coils, creating loop-like patterns. The ends of the coils are connected to adjacent commutator segments. A wave winding has a wavelike drawing pattern when presented in a plane.
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
130
Design of Rotating Electrical Machines
The number of commutator segments is given by K = u Q,
(2.105)
because each coil side begins and ends at the commutator segment. The number of commutator segments, therefore, depends on the conductor arrangement in the slot, and eventually on the number of coil sides in one layer. Further important parameters of commutator windings are: yQ coil span expressed as the number of slots per pole (see Equation (2.111)). y1 back-end connector pitch, which is a coil span expressed as the number of coil sides. For the winding, the coil sides of which are numbered with odd figures in the top layer and with even figures in the bottom layer, this is y1 = 2uyQ ∓ 1,
(2.106)
where the minus sign stands for the coil side numbering as seen in Figure 2.44, and the plus sign for the numbering where in slot 1 there are coil sides 1, 2, in slot 2 there are coil sides 3, 4, and so on, if u = 1; or in the top layer of slot 1 there are coil sides 1, 3 and in the bottom layer there are coil sides 2, 4, and so on, if u = 2. y2 y yc
front-end connector pitch; it is a pitch expressed as the number of coil sides between the right coil side of one coil and the left coil side of the next coil. total winding pitch expressed as the number of coil sides between two left coil sides of two adjacent coils. commutator pitch between the beginning and end of one coil expressed as the number of commutator segments.
The equation for commutator pitch is a basic equation for winding design because this pitch must be an integer yc =
nK ± a , p
(2.107)
where a is the number of parallel paths per half armature in a commutator winding, which means 2a parallel paths for the whole armature. The windings that are most often employed are characterized on the basis of n: 1. If n = 0, it results in a lap winding. The commutator pitch will be yc = ±a/ p, which means that a is an integer multiple of p to give an integer for the commutating pitch. For a lap winding 2a = 2p, this means a = p, yc = ±1. Such a winding is called a parallel one. The plus sign is for a progressive winding moving from left to right, and the minus sign for a retrogressive winding moving from right to left. If a is a k-multiple of the pole pair number, a = kp, then it is a k-multiplex parallel winding. For example, for a = 2p, the commutator pitch is yc = ±2, and this winding is called a duplex parallel winding.
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
Windings of Electrical Machines
131
2. If n = 1, it results in a wave winding and a commutator pitch, that is yc =
uQ ± a K ±a = p p
(2.108)
must be an integer. The plus sign is for progressive and the minus sign for retrogressive winding. In the wave winding the number of parallel paths is always 2; there is only one pair of parallel paths, irrespective of the number of poles: 2a = 2, a = 1. Not all the combinations of K, a, p result in an integer. It is a designer’s task to choose a proper number of slots, coil sides, number of poles and type of winding to ensure an integer commutator pitch. If the number of coils equals the number of commutator segments, then, if the coil sides are numbered with odd figures in the top layer and even figures in the bottom layer, we can write y = y1 + y2 = 2yc .
(2.109)
Therefore, if the commutator pitch is determined, the total pitch expressed as a number of coil sides is given by y = 2yc
(2.110)
and after y1 is determined from the numbers of slots per pole yQ and number of coil sides in a layer u, Q , yQ ∼ = 2p y1 = 2u yQ ∓ 1.
(2.111) (2.112)
The front-end connector pitch can be determined as y2 = y − y1 .
(2.113)
2.15.1 Lap Winding Principles The principles of the lap winding can best be explained by an example. Example 2.27: Produce a layout of a lap winding for a two-pole DC machine with 16 slots and one coil side in a layer. Solution: Given Q = 16, 2p = 2, u = 1, the number of commutator segments is K = u Q = 1 · 16 = 16, and for a lap winding 2a = 2p = 2. The commutator pitch is yc = ±a/ p = ±1. We choose a progressive winding, which means that yc = +1 (the winding proceeds from left to right), and the total pitch is y = 2yc = 2. The coil span yQ in number
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
132
Design of Rotating Electrical Machines
of slots is given by the number of slots per pole: yQ =
16 Q = = 8. 2p 2
The same pitch expressed in the number of coil sides is y1 = 2uyQ − 1 = 2 · 1 · 8 − 1 = 15. The front-end connector pitch is y2 = y − y1 = 2 − 15 = −13, which is illustrated in Figure 2.46. The coils can be connected in series in the same order that they are inserted in the slots of the rotor. The neighbouring coils are connected together, coil 1–16 to coil 3–18, and again to 5–20, and so on. This yields the winding diagram of Figure 2.46.
d
q
d
y1 = 15
y2 = −13
y=2
S
25 26 27 28 29 30 31 32 1 2 3
13
14
15
16
1
N
4 5 6 7 8
2
3
4
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
5
6
7
8
9
H1 10
11
12
13
14
I
15
10
12 13
11
H2 16
1
2
3
4
5
6
7
8
9
10
11
R
Figure 2.46 Diagram of a full-pitch lap winding. The winding is connected via brushes to an external resistance R. The pole shoes are also illustrated above the winding. In reality, they are placed above the coil sides. The laps illustrated with a thick line have been short-circuited via the brushes during commutation. The direction of current changes during the commutation. The numbers of slots (1–16) are given. The numbers of coil sides (1–32) in the slots are also given, the coil sides 1 and 32 are located in slot 1 and, for example, the coil sides 8 and 9 are located in slot 5. The commutator segments are numbered (1–16) according to the slots. It is said that the brushes are on the quadrature axis; this is nevertheless valid only magnetically. In this figure, the brushes are physically placed close to the direct axes
When we follow the winding by starting from the coil side 1, we can see that it proceeds by one step of span y1 = 15 coil sides. In slots 1 and 9, a coil with a large enough number of winding turns is inserted. Finally, after the last coil turn the winding returns left by a distance of one step of connection y2 = 2 − 15= −13 coil sides, to the upper coil side 3.
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
Windings of Electrical Machines
133
We continue in this way until the complete winding has been gone through, and the coil side 14 is connected to the upper coil side 1 through the commutator segment 1. The winding has now been closed as a continuum. The winding proceeds in laps from left to right; hence the name lap winding. The pitches of a commutator winding are thus calculated by the number of coil sides, not by the number of slots, because there can be more than two coil sides in one layer, for instance four coil sides in a slot layer (u = 1, 2, 3, 4, . . . ). In the lap winding of Figure 2.46, all the coil voltages are connected in series. The connection in series can be illustrated by constructing a polygon of the coil voltages, Figure 2.47. This figure illustrates the phasors at time t = 0 in the coil voltage phasor diagram of Figure 2.45. When the rotor rotates at an angular speed Ω, the coil voltage phasor diagram also rotates in a two-pole machine at an angular speed ω = Ω. Also the polygon rotates around its centre at the same angular speed. The real instantaneous value of each coil voltage may be found as a projection of the phasor on the real axis (see figure). According to the figure, the sum of all coil voltages is zero. Therefore, no circulating currents occur in the continuum. The highest value of the sum of the instantaneous values of coil voltages is equal to the diameter H1–H2 parallel to the real axis. This value remains almost constant as the polygon rotates, and thus the phasor H1–H2 represents a DC voltage without significant ripple. The voltage approaches a constant value when the number of coils approaches infinity. A DC voltage can be connected to an external electric circuit via the brushes that are in contact with the commutator segments. At the moment t = 0, as illustrated, the brushes have to be in contact with the commutator segment pairs 5–6 and 13–14 that are connected to coils 9–24 and 25–8. According to Figure 2.46, the magnetic south pole (S) is at slot 1 and magnetic north pole (N) at slot 9. Further, the direction of the magnetic flux is towards the observer at the south pole, and away from the observer at the north pole. As the winding moves left, a 1–16
31–14
3–18 5–20
29–12
7–22
27–10 H1
u (t)
19–2
A
H2
9–24
Re
25–8 11–26
23–6
13–28
21–4 19–2
17–32
15–30
Figure 2.47 Polygon of coil voltages of the winding in Figure 2.46. The sum of all the voltages is zero and hence the coils may be connected in series. The instantaneous value of a coil voltage u(t) will be the projection of the phasor on the real axis, for example u(t)19–2
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
134
Printer Name: Yet to Come
Design of Rotating Electrical Machines
positive emf is induced in the conductors under the south pole, and a negative emf under the north pole, in the direction indicated by the arrows. By following the laps from segment 14 to coil 27–10, we end up at the commutator segment 15, then gradually at segments 16, 1, 2, 3, 4 and at last coil 7–22 is brought to segment 5, touched by the brush H2. We have just described one parallel path created by coils connected in series via commutator segments. An induced emf creates a current in the external part of the electric circuit from the brush H2 to the brush H1, and thus in a generator drive, H2 is a positive brush with the given direction of rotation. Half of the current I in the external part of the circuit flows in the above-described path, and the other half via the coils 23–6 . . . 11–26, via commutator segments 12, 11, . . . 7, to the brush H2 and further to the external part of the circuit. In other words, there are two parallel paths in the winding. In the windings of large machines, there can be several pairs of paths in order to prevent the cross-sectional area of the conductors from increasing impractically. Because the ends of different pairs of paths touch the neighbouring commutator segments and have no other galvanic contact, the brushes have to be made wider to keep each pair of paths always in contact with the external circuit. If for instance in the coil voltage phasor diagram of Figure 2.45 every other coil 1–16, 5–20, 9–24 . . . 29–12 is connected in series with the first pair of paths, the lap is closed after the last turn of coil side 12 by connecting the coil to the first coil 1–16 (12 → 1, from 12 to 1). The coils that remain free are connected in the order 3–18, 7–22 . . . 31–14 and the lap is closed at the position 14 → 3. This way, a doubly-closed winding with two paths 2a = 2 is produced. In the voltage polygon, there are two revolutions, and its diameter, that is the brush voltage, is reduced to half the original polygon of one revolution illustrated in Figure 2.47. The output power of the system remains the same, because the current can be doubled when the voltage is cut in half. In general, the number of pairs of paths a always requires that a − 1 phasors are left between the phasors of series-connected coils in a coil voltage phasor diagram. The phasors may be similar. Because u is the number of coil sides per layer, each phasor of the coil voltage phasor diagram represents u coil voltages. This makes it possible to skip completely similar voltage phasors. This takes place for instance when u = 2. The winding of Figure 2.46 is wound clockwise, because the voltages of the coil voltage phasor diagram are connected in series clockwise starting from phasor 1–16. Were coil 1–16 connected via the commutator segment 16 to coil 31–14, the winding would have been wound counterclockwise. The number of brushes in a lap winding is always the same as the number of poles. Brushes of the same sign are connected together. According to Figure 2.46, the brushes always shortcircuit those coils, the coil sides of which are located at the quadrature axis (in the middle, between two stator poles) of the stator, where the magnetic flux density created by the pole magnetization is zero. This situation is also described by stating that the brushes are located at the quadrature axis of the stator independent of the real physical position of the brushes.
2.15.2 Wave Winding Principles The winding of Figure 2.46 can be turned into a wave winding by bending the coil ends of the commutator side according to the illustration in Figure 2.48, as a solution of Example 2.28 (see also Figure 2.49).
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
Windings of Electrical Machines
135
y = 30 y2 = 15
y2 = 15
y1= 15
S
2526 27 28 29 30 31 32 1 2 3
13
9
10
11
14
12
15
13
16
1
14
N
4 5 6 7 8
2
H1 15
I
3
16
4
1
9 10 1112 1314 15 16 17 18 19 20 2122 2324 25 26 27 28
5
2
6
3
7
4
8
5
9
6
10
H2 7
8
11
9
12
10
13
11
12
R
Figure 2.48 Full-pitch lap winding of Figure 2.46 turned into a wave winding. The currents of waveforms indicated with a thick line are commutating at the moment illustrated in the figure. The commutator pitch is yc = 15, which means almost two pole pitches. For instance, the wave coil that starts at the commutator segment 14 ends at segment 13, because 14 + yc = 14 + 15 = 29, but there are only 16 commutator segments, and therefore 29 − 16 = 13
Example 2.28: Produce a layout of a wave winding for a two-pole DC machine with 16 slots and one coil side in a layer. Solution: Given that Q = 16, 2p = 2, u = 1. The number of commutator segments is K = u Q = 1 · 16 = 16, and for a wave winding 2a = 2. The commutator pitch is yc =
16 ± 1 K ±a = = 17 or 15. p 1
We choose yc = +15 (winding proceeds from right to left), and the total winding pitch is y = 2yc = 30. The coil span yQ in number of slots is given by the number of slots per pole: yQ = Q/2 p = 16/2 = 8. The same pitch expressed as number of coil sides is y1 = 2uy Q − 1 = 2 · 1 · 8 − 1 = 15. The front-end connector pitch is y2 = y − y1 = 30 − 15 = 15, which is shown in Figure 2.48. In the above wave winding, the upper coil side 1 is connected to the commutator segment 10, and not to segment 1 as in the lap winding. From segment 10, the winding proceeds to the bottom side 18. The winding thus receives a waveform. In the figure, the winding proceeds from right to left, and counterclockwise in the coil voltage phasor diagram. The winding is thus rotated to the left. If the winding were turned to the right, the
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
136
Design of Rotating Electrical Machines
commutator pitch would be yc = 17, y = 34, y1 = 15, y2 = 19. The coil from the bottom side 16 would have to be bent to the right to segment 10, and further to the upper side 3, because 16 + y2 = 16 + 19 = 35. But there are only 32 coil sides, and therefore the coil will proceed to 35 − 32 = 3 or the third coil side. The commutator ends would in that case be even longer, which would be of no use.
y1 = 11 y2 = –9
y=2
S
N
1
2
3
4
21 22 23 1
5 6
2
7
H1 3
8
4 5
N
S
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
6
7 8
1
2
H4 H3 H2 9 10 11 12 13 14 15 16 17 18 19 20 21 22
(a) +
–
y = 13 + 11 = 24
y1 = 11
y2 = 13 N
1 2
3
N
S
4 5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
2
H1 3
4
5
6
18 19 21 22 23 1
S
7
8
H2 9 10 11 12 13
1
2
H3 H4 14 15 16 17 18 19 20 21 22
y c = 12 (b)
Figure 2.49 (a) Four-pole, double-layer lap winding presented in a plane. The winding moves from left to right and acts as a generator. The coils belonging to the commutator circuit are illustrated by a thick line. This winding is not a full-pitch winding, unlike the previous ones. The illustrated winding commutates better than a full-pitch winding. (b) The same winding developed into a wave winding. The wave under commutation is drawn with a thicker line than the others
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
Windings of Electrical Machines
137
The pitch of the winding for a wave winding follows the illustration y = y1 + y2 .
(2.114)
The position of brushes in a wave winding is solved in the same way as in a lap winding. When comparing the lap and wave windings, we can see that the brushes short-circuit the same coils in both cases. The differences between the windings are merely structural, and the winding type is selected basically on these structural grounds. As written above, the pitch of the winding for regular commutator windings, which equals the commutator pitch, is obtained from yc =
nu Q ± a nK ± a = , p p
(2.115)
where the plus sign in the equation is used for progressive winding (from left to right, i.e. clockwise) and the minus is used for retrogressive winding (from right to left, i.e. counterclockwise); n is zero or a positive integer. If n is zero, it results in a lap winding; if n = 1, it results in a wave winding. The commutator pitch yc must be an integer, otherwise the winding cannot be constructed. Not all combinations of K, p and a result in yc as an integer, and therefore a designer must solve this problem in its complexity.
2.15.3 Commutator Winding Examples, Balancing Connectors Nowadays, the conductors are typically inserted in slots that are on the surfaces of the armature. These windings are called drum armature windings. Drum-wound armature windings are in practice always double-layer windings, in which there are two coil sides in the slot on top of each other. Drum armature windings are constructed either as lap or wave windings. As discussed previously, the term ‘lap winding’ describes a winding that is wound in laps along the periphery of the armature, the ends of one coil being connected to adjacent segments, Figure 2.49a. Example 2.29: Produce a layout of the lap winding for a four-pole DC machine with 23 slots and one coil side in a layer. Solution: Given that Q = 23, 2p = 4, u = 1, the number of commutator segment is K = u Q = 1 · 23 = 23 and for a lap winding 2a = 2p = 4. The commutator pitch is yc = ±a/ p = 2/2 = ±1. We choose a progressive winding, which means that yc = +1 (winding proceeds from left to right), and the total winding pitch is y = 2yc = 2. The coil span yQ as the number of slots is given by the number of slots per pole: yQ = Q/2 p = 23/4 = 5.75 ⇒ 6 slots. The same pitch expressed as the number of coil sides is y1 = 2uy Q − 1 = 2 · 1 · 6 − 1 = 11. The minus sign is used because of the coil side arrangement in the slots according to Figure 2.44a. The front-end connector pitch is y2 = y − y1 = 2 − 11 = −9, which is shown in Figure 2.49a. In the winding of Figure 2.49a, there are 23 armature coils (46 coil sides, two in each slot), with one turn in each, four brushes and a commutator with 23 segments. There
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
138
November 25, 2008
16:47
Printer Name: Yet to Come
Design of Rotating Electrical Machines
are four current paths in the winding (2a = 4), which thereby requires four brushes. By following the winding starting from the first brush, we have to travel a fourth of the total winding to reach the next brush of opposite sign. From segment 1, the left coil side is put to the upper layer 1 in slot 1 (see Figure 2.44a). Then, the right side is put to the bottom layer 1 + y1 = 1 + 11 = 12 in slot 7, from where it is led to the segment number 1 + yc = 1 + 1 = 2, and then from segment 2 to the upper layer 3 in slot 2, because 12 − 9 = 3. It proceeds to the bottom layer 14 in slot 8, because 3 + 11 = 14, and then to segment 3, and continues to the coil side 5 in slot 3 and via 16 in slot 9 to segment 4, and so on. In the figure, the brushes are broader than the segments of the commutator, the laps illustrated with thick lines being short-circuited via the brushes. In DC machines, a proper commutation requires that the brushes cover several segments. The coil sides of shortcircuited coils are approximately in the middle between the poles, where the flux density is small. In these coils, the induced voltage is low, and the created short-circuit current is thus insignificant.
Example 2.30: Produce a layout of a wave winding for a four-pole DC machine with 23 slots and one coil side in a layer. Solution: Given that Q = 23, 2p = 4, u = 1. The number of commutator segments is K = u Q = 1 · 23 = 23, and for a wave winding 2a = 2. The commutator pitch isyc = K ±a = 23±1 = 12, or 11. p 2 We choose yc = +12 and the total winding pitch is y = 2yc = 24. The coil span yQ as the number of slots is given by the number of slots per pole: yQ = Q/2 p = 23/4 = 5.75 ⇒ 6. The same pitch expressed as the number of coil sides is y1 = 2uyQ − 1 = 2 · 1 · 6 − 1 = 11. The minus sign is used because of the coil side arrangement in the slots according to Figure 2.44a. The front-end connector pitch is y2 = y − y1 = 24 − 11 = 13, which is shown in Figure 2.49b. Figure 2.49b illustrates the same winding as in Figure 2.49a but developed for a wave winding. In wave windings, there are only two current paths: 2a = 2 regardless of the number of poles. A wave winding and a lap winding can also be combined as a frog-leg winding. We can see in Figure 2.49b that from the commutator segment 1 the coil left side is put to the upper layer 13 in slot 7. Then the right side in the lower layer is put to 13 + y1 = 13 + 11 = 24 in slot 13, from where it is led to segment 1 + yc = 1 + 12 = 13, and then from segment 13 to the upper layer 37 (slot 19), because 24 + y2 = 24 + 13 = 37. We then proceed to the lower layer 2 in slot 2, because 37 + y1 = 37 + 11 = 48, which is over the number coil sides of 46 in 23 slots; therefore, it is necessary to make a correction 48 − (2 × 23) = 50 − 46 = 2. From here we continue to segment 2, because 13 + yc = 13 + 12 = 25, after the correction 25 − 23 = 2, and so on. When passing through a wave winding from one brush to another brush of the opposite sign, half of the winding and half of the segments of the commutator are gone through. The current thus has only two paths irrespective of the number of poles. As a matter of fact, in a wave winding, only one pair of brushes is required, which is actually enough for small
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
Windings of Electrical Machines
16:47
Printer Name: Yet to Come
139
machines. Nevertheless, usually as many brushes are required as there are poles in the machine. This number is selected in order to reach a maximum brush area with the shortest commutator possible. One coil of a wave winding is always connected to the commutator at about a distance of two pole pitches. A wave winding is a more common solution than a lap winding for small (<50 kW) machines, since it is usually more cost effective than a lap winding. In a machine designed for a certain speed, a number of pole pairs and a flux, the wave winding requires less turns than a lap winding, excluding a two-pole machine. Correspondingly, the cross-sectional area of conductors in a wave winding has to be larger than the area of a lap winding. Therefore, in a machine of a certain output, the copper consumption is the same irrespective of the type of winding. The previous windings are simple examples of various alternative constructions for commutator windings. In particular, when numerous parallel paths are employed, we must ensure that the voltages in the paths are equal, or else compensating currents will occur flowing through the brushes. These currents create sparks and wear out the commutator and the brushes. The commutator windings have to be symmetrical to avoid extra losses. If the number of parallel pairs of paths is a, there are also a revolutions in the voltage polygon. If the revolutions completely overlap the voltage polygon, the winding is symmetrical. In addition to this condition, the diameter H1–H2 has to split the polygon into two equal halves at all times. These conditions are usually met when both the number of slots Q and the number of poles 2p are evenly divisible by the number of parallel paths 2a. Figure 2.50 illustrates the winding diagram of a four-pole machine. The number of slots is Q = 16, and the number of parallel paths is 2a = 4. Hence, the winding meets the above conditions of symmetry. The coil voltage phasor diagram and the voltage polygon are depicted in Figure 2.51. Since a = 2, there has to be one phasor a − 1 = 1 of the coil voltage phasor diagram between the consequent phasors of the polygon. When starting with phasor 1–8, the next phasor in the voltage polygon is 3–10. In between, there is phasor 17–24, which is of the same phase as the previous one, and so on. The first circle around the voltage polygon ends up at the point of phasor 15–22, in the winding diagram, at the commutator segment 9. However, the winding is not yet closed at this point, but continues for a second, similar revolution formed by phasors 17–24 . . . 31–6. The winding is fully symmetrical, and the coils short-circuited by the brushes placed on the quadrature axes. The potential at different positions of the winding is now investigated with respect to an arbitrary position, for instance a commutator segment 1. In the voltage polygon, this zero potential is indicated by point A of the polygon. At t = 0, the instant depicted by the voltage polygon, the potential of segment 2 amounts to the amplitude of phasor 1–8, otherwise it is a projection on the straight line H1–H2. Respectively, the potential at all other points in the polygon with respect to segment 1 is at every instant the phasor drawn from point A to this point, projected on the straight line H1–H2. Since for instance phasors 3–10 and 19–26 have a common point in the voltage polygon, the potential of the respective segments 3 and 11 of the commutator is always the same, and the potential difference between them is zero at every instant. Thus, these commutator segments can be connected with conductors. All those points that correspond to the common points of the voltage polygon can be interconnected. Figure 2.50 also depicts three other balancing connectors. The purpose of these compensating combinations is to conduct currents that are created by the structural asymmetries of the machine, such as the eccentricity of the rotor. Without balancing connectors, the compensating currents,
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
140
Design of Rotating Electrical Machines
S
2526 27 28 29 30 31 32 1
13
14
13
15
14
-
16
15
2 3
1
16
2
1
S
N
4 5
6 7
3
2
+
8 9 10 11 12 13 14 15 16 17 18 19 20 2122 23 24 25 26
4
3
5
4
6
5
7
6
-
8
7
9
8
10
9
11
10
+
12
11
13
12
A B C D
Ia
Ia
Figure 2.50 Balancing connectors or equalizer bars (bars A, B, C and D) of a lap winding. For instance, the coil sides 29 and 13 are located in similar magnetic positions if the machine is symmetric. Hence, the commutator segments 15 and 7 may be connected together with a balancing connector
created for various reasons, would flow through the brushes, thus impeding the commutation. There is an alternating current flowing in the compensating combinations, the resulting flux of which tends to compensate the asymmetry of the magnetic flux caused by the eccentricity of the rotor. From this we may conclude that compensating combinations are not required in machines with two brushes. The maximum number of compensating combinations is obtained from the number of equipotential points. In the winding of Figures 2.50 and 2.51, we could thus assemble eight combinations; however, usually only a part of the possible combinations is needed to improve the operation of the machine. According to the illustrations, there are four possible combinations: A, B, C and D. In machines that do not commutate easily, it may prove necessary to employ all the possible compensating combinations. In small and medium machines, the compensating combinations are placed behind the commutator. In large machines, ring rails are placed at one end of the rotor, while the commutator is at the other end.
2.15.4 AC Commutator Windings The equipotential points A, B, C and D of the winding in Figure 2.51 are connected with rails at A, B, C and D in Figure 2.50. The voltages between the rails at time t = 0 are illustrated by the respective voltages in the voltage polygon. When the machine is running, the voltage polygon is rotating, and therefore the voltages between the rails form a symmetrical fourphase system. The frequency of the voltages depends on the rotation speed of the machine.
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
Windings of Electrical Machines
141
A 13–20
15–22 31–6
29–4
11–18 27–2
15–22 31–6
9–16
1–8
25–32
17–24 3–10 19–26
7–14 23–30 21–28
5–12
1–8 17–24 3–10 19–26
A: comm. segments 1 and 9
B
B: comm. segments 3 and 11 H1 13–20
H2 5–12 21–28
D: comm. segments 7 and 15
29–4 D
11–18 27–2
C: comm. segments 5 and 13 9–16
7–14 23–30
C
25–32 (a)
(b)
Figure 2.51 (a) Coil voltage phasor diagram of the winding of Figure 2.50. (b) The coil voltage polygon of the winding of Figure 2.50 and the connection points of the balancing connectors A, B, C and D. There are two overlapping polygons in the illustrated voltage polygon. Phasor 1–8 is the first phasor and 3–10 the next phasor of the polygon. Phasor 17–24 is equal to phasor 1–8 because both have their positions in the middle of poles, but it is skipped when constructing the first polygon. The first polygon is closed at the tip of phasor 15–22. The winding continues to form another similar polygon using phasors 17–24 . . . 31–6. The winding is completely symmetrical, and its brush-short-circuited coils are on the quadrature axes. Phasors 3–10 and 19–26 have a common tip point B in the polygons created by the commutator segments 3 and 11, as shown in Figure 2.50 and in figure (b), and the points can thus be connected by balancing connectors. The three other balancing connector points are A, C and D
The phase windings of this system, with two parallel paths in each, are connected in a square. From the same principle, with tappings, we may create other poly-phase systems connected in a polygon, Figure 2.52. If zc coils are connected as a closed commutator winding with a parallel path pairs, the system is transformed with tappings into an m-phase AC system connected in a polygon by coupling the tappings at the distance of a step ym =
zc ma
(2.116)
from each other. In a symmetrical poly-phase system, both ym and zc /a are integers. Windings of this type have been employed for instance in rotary converters, the windings of which have been connected both to the commutator and to the slip rings. They convert direct current into alternating current and vice versa. Closed commutator windings cannot be turned into star-connected windings, and only polygons are allowed.
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
142
Design of Rotating Electrical Machines
A
C B
Figure 2.52 Equipotential points A, B and C of the voltage polygon, which represents 12 coils of the commutator winding, are connected as a triangle to form a poly-phase system. The respective voltages are connected via slip rings and brushes to the terminals of the machine
2.15.5 Current Linkage of the Commutator Winding and Armature Reaction The curved function of the current linkage created by the commutator winding is computed in the way illustrated in Figure 2.9 for a three-phase winding. When defining the slot current I u , the current of the short-circuited coils can be set to zero. In short-pitched coils, there may be currents flowing in opposite directions in the different coil sides of a single slot. If zb is the number of brushes, the armature current I a is divided into brush currents I = I a /(zb /2). Each brush current in turn is divided into two paths as conductor currents I s = I/2 = I a /2a, where a is the total number of path pairs of the winding. In a slot, there are zQ conductors, and thus the sum current of a slot is z Ia , Q 2a
Iu = z Q Is =
(2.117)
where z is the number of conductors in the complete winding. All the pole pairs of the armature are alike, and therefore it suffices to investigate only one of them, namely a two-pole winding, Figure 2.46. The curved function of the magnetic voltage therefore follows the illustration in Figure 2.53.
S
N
Θ
slots 1
Θma
2
3
4
5
6
7
8
9
Θ
10
a
11
=
Θma
2 12
13
14
15
16
1
Figure 2.53 Current linkage curve of the winding of Figure 2.46, when the commutation takes place in the coils in slots 5 and 13
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
Windings of Electrical Machines
143
The number of brushes in a commutator machine normally equals the number of poles. The number of slots between the brushes is q=
Q . 2p
(2.118)
This corresponds to the number of slots per pole and phase of AC windings. The effective number of slots per pole and phase is always somewhat lower, because a part of the coils is always short-circuited. The distribution factor for an armature winding kda is obtained from Equation (2.33). For a fundamental, and m = 1, it is rewritten in the form 2p
kda1 =
Q sin
pπ . Q
(2.119)
Armature coils are often short pitched, and the pitch factor kpa is thus obtained from Equation (2.32). The fundamental winding factor of a commutator winding is thus kwa1 = kda1 kpa1 ≈
2 . π
(2.120)
When the number of slots per pole increases, kda1 approaches the limit 2/π. This is the ratio of the voltage circle (polygon) diameter to half of the circle perimeter. In ordinary machines, the ratio of short pitching is W/τ p > 0.8, and therefore kpal > 0.95. As a result, the approximate value kwa1 = 2/π is an adequate starting point in the initial manual computation. More thorough investigations have to be based on an analysis of the curved function of the current linkage. In that case, the winding has to be observed in different positions of the brushes. Figure 2.45 shows that at the right side of the quadrature axis q, the direction of each slot current is towards the observer, and on the left, away from the observer. In other words, the rotor becomes an electromagnet with its north pole at the bottom and its south pole at the top. The pole pair current linkage of the rotor is Θma = q Iu =
z Q z Ia = Ia = N a Ia . 2 p Q 2a 4ap
(2.121)
The term Na =
z 4ap
(2.122)
in the equation is the number of coil turns per pole pair in a commutator armature in one parallel path, that is turns connected in series, because z/2 is the number of all armature turns; z/2(2a) is the number of turns in one parallel path, in other words connected in series, and finally z/2(2a)p is the number of turns per pole pair. The current linkage calculated according to Equation (2.121) is slightly higher than in reality, because the number of slots per pole and phase includes also the slots with short-circuited coil sides. In calculation, we may employ the linear current density Aa =
Q Iu N a Ia 2p . = N a Ia = πD πD τp
(2.123)
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
144
Design of Rotating Electrical Machines
The current linkage of the linear current density is divided into magnetic voltages of the air gaps, the peak value of which is τp
2 ˆ δa = Θ
1 1 z Ia N a Ia Θma Aa τp = = = , 2 2 2 p 2a 2 2
(2.124)
1 1 1 z Ia Θma Aa τp = = N a Ia = = Θδa . 2 2 2 p 2a 2 2
(2.125)
Aa dx = 0
Θδa = Θma /2 =
ˆ δa is located at the brushes (in the middle of the poles), the In the diagram, the peak value Θ value varying linearly between the brushes, as illustrated with the dashed line in Figure 2.53. ˆ δa is the armature reaction acting along the quadrature axis under one tip of a pole shoe, Θ and it is the current linkage to be compensated. The armature current linkage also creates commutation problems, which means that the brushes have to be shifted from the q-axis by an angle ε to a new position as shown in Figure 2.54. This figure also gives the positive directions of the current I and the respective current linkage. The current linkage can be divided into two components: Θma sin ε = Θδa sin ε, 2 Θma cos ε = Θδa cos ε. = 2
Θmd =
(2.126)
Θmq
(2.127)
The former is called a direct component and the latter a quadrature component. The direct component magnetizes the machine either parallel or in the opposite direction to the actual field winding of the main poles of the machine. There is a demagnetizing effect if the brushes d
I ε Θ md
Θma
q
Θ mq
I
Figure 2.54 Current linkage of a commutator armature and its components. To ensure better commutation, the brushes are not placed on the q-axis
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
Windings of Electrical Machines
145
are shifted in the direction of rotation in generator mode, or in the opposite direction of rotation in motoring operation; the magnetizing effect, on the contrary, is in generating operation opposite the direction of rotation, and in motoring mode in the direction of rotation. The quadrature component distorts the magnetic field of the main poles, but neither magnetizes nor demagnetizes it. This is not a phenomenon restricted to commutator machines – the reaction is in fact present in all rotating machines.
2.16 Compensating Windings and Commutating Poles As stated above, the armature current linkage (also called armature reaction) has some negative influence on DC machine operation. The armature reaction may create commutation problems and must, therefore, be compensated. There are different methods to mitigate such armature reaction problems: (1) shift the brushes from their geometrical neutral axis to the new magnetically neutral axis; (2) increase the field current to compensate for the main flux decrease caused by the armature reaction; (3) build commutating poles; and (4) build compensating winding. The purpose of compensating windings in DC machines is to compensate for harmful flux components created by armature windings. Flux components are harmful, because they create an unfavourable air-gap flux distribution in DC machines. The dimensioning of compensating windings is based on the current linkage that has to be compensated by the compensating winding. The conductors of a compensating winding have therefore to be placed close to the surface of the armature, and the current flowing in them has to be opposite to the armature current. In DC machines, the compensating winding is inserted in the slots of the pole shoes. The compensating effect has to be created in the section αi τp of the pole pitch, as illustrated in Figure 2.55. If z is the total number of conductors in the armature winding, and the current flowing in them is I s , we obtain an armature linear current density Aa =
z Is . Dπ
(2.128)
N
commutating pole NS
ia
S
armature N
ia f T
ia N S
ia
ia
compensating winding
ia N
if
field winding
commutating pole
i
S
Nk- turns
compensating winding
ατi τ p
τp
Na- turns per pole pair armature winding
S (a)
(b)
Figure 2.55 (a) Location of the compensating windings and the commutating poles. (b) Definition of the current linkage of a compensating winding
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
146
Design of Rotating Electrical Machines
The total current linkage Θ 000f of the armature reaction and the compensating winding has to be zero in the integration path. It is possible to calculate the required compensating current linkage Θ k by evaluating the corresponding current linkage of the armature to be compensated. The current linkage of the armature Θ a occurring under the compensating winding at the distance α i τ p /2, as shown in Figure 2.55, is Θa
0006α τ 0007 i p
2
= z Is
αi τp Aa αi τp = . 2Dπ 2
(2.129)
Since there is an armature current I a flowing in the compensating winding, we obtain the current linkage of the compensating winding accordingly Θk = −Nk Ia ,
(2.130)
where N k is the number of turns of the compensating winding. Since the current linkage of the armature winding has to be compensated in the integration path, the common current linkage is written as Θ000f = Θk + Θa = −Nk Ia +
αi τp Aa = 0, 2
(2.131)
where Θa =
1 1 1 z Ia αi Aa τp = αi = N a Ia . 2 2 2 p 2a 2
(2.132)
Now, we obtain the number of turns of the compensating winding to be inserted in the pole shoes producing demagnetizing magnetic flux in the q-axis compensating the armature reaction flux: Nk =
αi τp Aa . 2Ia
(2.133)
Since N k has to be an integer, Equation (2.133) is only approximately feasible. To avoid large pulsating flux components and noise, the slot pitch of the compensating winding is set to diverge by 10–15% from the slot pitch of the armature. Since a compensating winding cannot completely cover the surface of the armature, commutating poles are also utilized to compensate for the armature reaction although their function is just to improve commutation. These commutating poles are located between the main magnetizing poles of the machine. There is an armature current flowing in the commutating poles. The number of turns on the poles is selected such that the effect of the compensating winding is strengthened appropriately. In small machines, commutating poles alone are used to compensate for the armature reaction. If commutation problems still occur despite a compensating winding and commutating poles, the position of the brush rocker of the DC machine can be adjusted so that the brushes are placed on the real magnetic quadrature axis of the machine.
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
Windings of Electrical Machines
147
In principle, the dimensioning of a commutating pole winding is straightforward. Since the compensating winding covers the section αi τp of the pole pitch and includes N k turns that carry the armature current I a , the commutating pole winding should compensate for the remaining current linkage of the armature (1 − αi ) τp . The number of turns in the commutating pole N cp should be Ncp =
1 − αi Nk . αi
(2.134)
When the same armature current I a flows both in the compensating winding and in the commutating pole, the armature reaction will be fully compensated. If there is no compensation winding, the commutating pole winding must be dimensioned and the brushes positioned so that the flux in a commutating armature coil is at its maximum, and no voltage is induced in the coil.
2.17 Rotor Windings of Asynchronous Machines The simplest rotor of an induction machine is a solid iron body, turned and milled to the correct shape. In general, a solid rotor is applicable to high-speed machines and in certain cases also to normal-speed drive. However, the computation of the electromagnetic characteristics of a steel rotor is a demanding task, and it is not discussed here. A solid rotor is characterized by a high resistance and a high leakage inductance of the rotor. The phase angle of the apparent power created by a waveform penetrating a linear material is 45◦ , but the saturation of the steel rotor reduces the phase angle. A typical value for the phase angle of a solid rotor varies between 30◦ and 45◦ , depending on the saturation. The characteristics of a solid-rotor machine are discussed for instance in Pyrh¨onen (1991), Huppunen (2004) and Aho (2007). The performance characteristics of a solid rotor can be improved by slotting the surface of the rotor, Figure 2.56. Axial slots are used to control the flow of eddy currents in a direction that is favourable to torque production. Radial slots increase the length of the paths of the eddy currents created by certain high-frequency phenomena. This way, eddy currents are damped and the efficiency of the machine is improved. The structure of the rotor is of great significance in torque production, Figure 2.57. An advantage of common cage winding rotors is that they produce the highest torque with small values of slip, whereas solid rotors yield a good starting torque. In small machines, a Ferraris rotor can be employed. It is constructed from a laminated steel core covered with a thin layer of copper. The copper covering provides a suitable path for eddy currents induced in it. The copper covering takes up a certain amount of space in the air gap, the electric value of which increases notably because of the covering, since the relative permeability of copper is µr = 0.999 992 6. As a diamagnetic material, copper is thus even a somewhat weaker path for the magnetic flux than air. The rotor of an induction machine can be produced as a normal slot winding by following the principles discussed in the previous sections. A wound rotor has to be equipped with the same number of pole pairs as the stator, and therefore it is not in practice suitable for machines permitting a varying number of poles. The phase number of the rotor may differ from the phase number of the stator. For instance, a two-phase rotor can be employed in slip-ring machines with a three-phase stator. The rotor winding is connected to an external circuit via slip rings.
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
148
Design of Rotating Electrical Machines
axial slots
radial slots (a)
(b)
(c)
Figure 2.56 Different solid rotors. (a) A solid rotor with axial and radial slots (in this model, shortcircuit rings are required). They can be constructed either by leaving the part of the rotor that extends from the stator without slots, or by equipping it with aluminium or copper rings. (b) A rotor equipped with short-circuit rings in addition to slots. (c) A slotted and cage-wound rotor. A completely smooth rotor can also be employed
The most common short-circuit winding is the cage winding, Figure 2.58. The rotor is produced from electric steel sheets and provided with slots containing noninsulated bars, the ends of which are connected either by welding or brazing to the end rings, that is to the shortcircuit rings. The short-circuit rings are often equipped with fins that together act as a cooling fan as the rotor rotates. The cage winding of small machines is produced from pure aluminium by simultaneously pressure casting the short-circuit rings, the cooling ribs and the bars of the rotor. Figure 2.59 illustrates a full-pitch winding of a two-pole machine observed from the rotor end. Each coil of the rotor also constitutes a complete phase coil, since the number of slots in
T
(a) (d) (c)
(b)
0 0
W
Figure 2.57 Torque curves of different induction rotors as a function of mechanical angular speed Ω: (a) a normal double-cage winding rotor, (b) a smooth solid-rotor without short-circuit rings, (c) a smooth solid rotor equipped with copper short-circuit rings, (d) an axially and radially slitted solid rotor equipped with copper short-circuit rings
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
Windings of Electrical Machines
149
bars
short-circuit rings
Figure 2.58 Simple cage winding. Cooling fans are not illustrated. Qr = 24
the rotor is Qr = 6. The star point 0 forms, based on symmetry, a neutral point. If there is only one turn in each coil, the coils can be connected at this point. The magnetic voltage created by the rotor depends only on the current flowing in the slot, and therefore the connection of the windings at the star point is of no influence. However, the connection of the star point at one end of the rotor turns the winding into a six-phase star connection with one bar, that is half a turn, in each phase. The six-phase winding is then short-circuited also at the other end. Since the shaft of the machine also takes up some room, the star point has to be created with a short-circuit ring as illustrated in Figure 2.58. We can now see in Figure 2.59 a star-connected, 2
1
0 3
6 Nr = 1
4
5
Figure 2.59 Three-phase winding of a two-pole rotor. The number of turns in the phase coil is N r = 1. If the winding is connected in star at point 0 and short-circuited at the other end, a six-phase, short-circuited winding is created, for which the number of turns is Nr = 1/2, kwr = 1
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
16:47
Printer Name: Yet to Come
150
Design of Rotating Electrical Machines
short-circuited poly-phase winding, for which the number of phase coils is in a two-pole case equal to the number of bars in the rotor: mr = Qr . In machine design, it is often assumed that analysis of the fundamental ν = 1 alone gives an adequate description of the characteristics of the machine. However, this is valid for cage windings only if we consider also the conditions related to the number of bars. A cage winding acts differently with respect to different harmonics ν. Therefore, a cage winding has to be analysed with respect to the general harmonic ν. This is discussed in more detail in Chapter 7, in which different types of machines are investigated separately.
2.18 Damper Windings The damper windings of synchronous machines are usually short-circuit windings, which in nonsalient-pole machines are contained in the same slots with magnetizing windings, and in salient-pole machines in particular, in the slots at the surfaces of pole shoes. There are no bars in the damper windings on the quadrature axes of salient-pole machines, and only the short-circuit rings encircle the machine. The resistances and inductances of the damper winding of the rotor are thus quite different in the d- and q-directions. In a salient-pole machine constructed of solid steel, the material of the rotor core itself may suffice as a damper winding. In that case, asynchronous operation resembles the operation of a solid-rotor induction machine. Figure 2.60 illustrates the damper winding of a salient-pole synchronous machine.
damper bar copper plate q-axis
connector copper plate
d-axis
Figure 2.60 Structure of the damper winding of a six-pole salient-pole synchronous machine. The copper end plates are connected with a suitable copper connector to form a ring for the damper currents. Sometimes real rings also connect the damper bars
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
Windings of Electrical Machines
16:47
Printer Name: Yet to Come
151
Damper windings improve the performance characteristics of synchronous machines especially during transients. As in asynchronous machines, thanks to damper windings, synchronous machines can in principle be started direct-on-line. Also a stationary asynchronous drive is in some cases a possible choice. Especially in single-phase synchronous machines and in the unbalanced load situations of three-phase machines, the function of damper windings is to damp the counter-rotating fields of the air gap which otherwise cause great losses. In particular, the function of damper windings is to damp the fluctuation of the rotation speed of a synchronous machine when rotating loads with pulsating torques, such as piston compressors. The effective mechanisms of damper windings are relatively complicated and diverse, and therefore their mathematically accurate design is difficult. That is why damper windings are usually constructed by drawing upon empirical knowledge. However, the inductances and resistances of the selected winding can usually be evaluated with normal methods to define the time constants of the winding. When the damper windings of salient-pole machines are placed in the slots, the slot pitch has to be selected to diverge by 10–15% from the slot pitch of the stator to avoid pulsation of the flux and noise. If the slots are skewed (usually by the amount of a single stator slot pitch), the same slot pitch can be selected both for the stator and the rotor. Damper winding comes into effect only when the bars of the winding are connected with short-circuit rings. If the pole shoes are solid, they may, similar to the solid rotor of a nonsalient-pole machine, act as a damper winding as long as the ends of the pole shoes are connected with durable short-circuit rings. In nonsalient-pole machines, an individual damper winding is seldom used; however, conductors may be mounted under slot wedges, or the slot wedges themselves are used as the bars of the damper winding. In synchronous generators, the function of damper windings is for instance to damp counter-rotating fields. To minimize losses, the resistance is kept to a minimum in damper windings. The cross-sectional area of the damper bars is selected to be 20–30% of the crosssectional bar area of the armature winding. The windings are made of copper. In single-phase generators, damper bar cross-sectional areas larger than 30% of the stator copper area are employed. The frequency of the voltages induced by counter-rotating fields to the damper bars is doubled when compared with the network frequency. Therefore, it has to be considered whether special actions are required with respect to the skin effect of the damper windings (e.g. utilization of Roebel bars (braided conductors) to avoid the skin effect). The cross-sectional area of the short-circuit rings is selected to be approximately 30–50% of the cross-sectional area of the damper bars per pole. The damper bars have to damp the fluctuations of the rotation speed caused by the pulsating torque loads. They also have to guarantee a good starting torque when the machine is starting as an asynchronous machine. Thus, brass bars or small-diameter copper damper bars are employed to increase the rotor resistance. The cross-sectional area of copper bars is typically only 10% of the cross-sectional area of the copper of the armature winding. In PMSMs, in axial flux machines in particular, the damper winding may be easily constructed by placing a suitable copper or aluminium plate on the surface of the rotor, on top of the magnets. However, achieving a total conducting surface in the range of 20–30% of the stator copper surface may be somewhat difficult because the plate thickness easily increases to become too large and limits the air-gap flux density created by the magnets.
P1: OTA/XYZ P2: ABC c02 JWBK312-Pyrhonen
November 25, 2008
152
16:47
Printer Name: Yet to Come
Design of Rotating Electrical Machines
Bibliography Aho, T. (2007) Electromagnetic Design of a Solid Steel Rotor Motor for Demanding Operational Environments, Dissertation. Acta Universitatis Lappeenrantaensis 134, Lappeenranta University of Technology. (https:// oa.doria.fi/) Heikkil¨a, T. (2002) Permanent Magnet Synchronous Motor for Industrial Inverter Applications – Analysis and Design, Dissertation. Acta Universitatis Lappeenrantaensis 134, Lappeenranta University of Technology. (https:// oa.doria.fi/) Hindmarsh, J. (1988) Electrical Machines and Drives. Worked Examples, 2nd edn, Pergamon Press, Oxford. Huppunen, J. (2004) High-Speed Solid-Rotor Induction Machine – Electromagnetic Calculation and Design, Dissertation. Acta Universitatis Lappeenrantaensis 197, Lappeenranta University of Technology. (https://oa.doria.fi/) IEC 60050-411 (1996) International Electrotechnical Vocabulary (IEC). Rotating Machines. International Electrotechnical Commission, Geneva. Pyrh¨onen, J. (1991) The High-Speed Induction Motor: Calculating the Effects of Solid-Rotor Material on Machine Characteristics, Dissertation, Acta Polytechnica Scandinavica, Electrical Engineering Series 68, Helsinki University of Technology (https://oa.doria.fi/) Richter, R. (1954) Electrical Machines: Induction Machines (Elektrische Maschinen: Die Induktionsmaschinen), Vol. IV, 2nd edn, Birkh¨auser Verlag, Basle and Stuttgart. Richter, R. (1963) Electrical Machines: Synchronous Machines and Rotary Converters (Elektrische Maschinen: Synchronmaschinen und Einankerumformer), Vol. II, 3rd edn, Birkh¨auser Verlag, Basle and Stuttgart. Richter, R. (1967) Electrical Machines: General Calculation Elements. DC Machines (Elektrische Maschinen: Allgemeine Berechnungselemente. Die Gleichstrommaschinen), Vol. I, 3rd edn, Birkh¨auser Verlag, Basle and Stuttgart. Salminen, P. (2004) Fractional Slot Permanent Magnet Synchronous Motors for Low Speed Applications, Dissertation. Acta Universitatis Lappeenrantaensis 198, Lappeenranta University of Technology (https://oa.doria.fi). Vogt, K. (1996) Design of Electrical Machines (Berechnung elektrischer Maschinen), Wiley-VCH Verlag GmbH, Weinheim.
P1: OTA/XYZ P2: ABC c03 JWBK312-Pyrhonen
November 23, 2008
11:47
Printer Name: Yet to Come
3 Design of Magnetic Circuits The magnetic circuit of an electrical machine generally consists of ferromagnetic materials and air gaps. In an electrical machine, all the windings and possible permanent magnets participate in the magnetizing of the machine. It must also be noted that in a multiple-pole system, the magnetic circuit has several magnetic paths. Normally, an electrical machine has as many magnetic paths as it has poles. In a two-pole system, the magnetic circuit is symmetrically divided into two paths. A possible magnetic asymmetry occurring in the geometry of the magnetic circuit also influences the magnetic state of the machine. In the literature, a magnetic circuit belonging to one pole is usually analysed in the design of a complete magnetic circuit. This method is employed here also. In other words, according to Equation (2.15), the ˆ s1 of the fundamental component of the current linkage is acting on half of the amplitude Θ magnetic path. A complete magnetic path requires two amplitudes; see Figure 2.9. The design of a magnetic circuit is based on the analysis of the magnetic flux density B and the magnetic field strength H in different parts of the machine. The design of a magnetic circuit is governed by Amp`ere’s law. First, we select a suitable air-gap flux density Bδ to the machine. Next, we calculate the corresponding field strength values H in different parts of the machine. The mmf F m of the circuit equals the current linkage Θ of the circuit 0001 0002 i = Θ. (3.1) Fm = H · dl = In a running electrical machine, the sum current linkage is produced by all the currents and possible permanent magnet materials. In the basic design of a magnetic circuit, only the winding, the main task of which is to magnetize the machine, is considered the source of magnetizing current linkage; that is, the machine is observed when running at no load. In DC machines and synchronous machines, the machine is magnetized by magnetizing windings (field windings) or permanent magnets, and the armature winding is kept currentless. In a synchronous machine, the armature winding may nevertheless take part in the determination of the magnetic state of the machine also when the machine is running at no load, if the air-gap flux created by the rotor magnetization does not induce a stator emf exactly equal to the stator voltage. The influence of an armature winding, that is the armature reaction, is investigated later in design, when the performance characteristics of the machine are being calculated. In Design of Rotating Electrical Machines Juha Pyrh¨onen, Tapani Jokinen and Val´eria Hrabovcov´a © 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-69516-6
P1: OTA/XYZ P2: ABC c03 JWBK312-Pyrhonen
November 23, 2008
11:47
Printer Name: Yet to Come
154
Design of Rotating Electrical Machines
an induction machine, the magnetizing winding and the armature winding are not separated, and therefore the magnetizing of the machine is carried out by the stator winding. However, according to the IEC, the induction machine stator is not regarded as an armature even though it is similar to a synchronous machine armature. Our objective now is to solve the magnetic potential differences 0003 Um, i =
Hi · dli
(3.2)
in different parts 0004 of the magnetic circuit and the required current linkage Θ corresponding to their sum Um,i . In traditional machines, this is a fairly straightforward task, since the main parameters of the magnetic circuit have in principle been set quite early in the machine design and the need for magnetizing current does not necessarily alter the dimensions of the magnetic circuit. In magnetic circuits with permanent magnets instead, the situation is somewhat more complicated especially in machines where magnets are embedded inside the iron core. In that case, the leakage flux of permanent magnets is high and the leakage flux saturates the iron bridges, which enclose the magnets inside the iron core. The division of the flux created by permanent magnets into the main flux and the leakage flux is difficult to carry out analytically. In practice, the magnetic field has to be solved numerically using a finite element program for determining the magnetic fields. To increase the air-gap flux density of a permanent magnet machine, we can embed the magnets in V-form and have magnets wider than the pole pitch of the machine. This way, it is possible to increase the air-gap flux density of a permanent magnet machine even higher than the remanence flux density of the permanent magnet material. In electrical machines, the term ‘magnetic circuit’ refers to those sections of the machine through which the main flux of the machine is flowing. In stator and rotor yokes, the main flux splits up into two paths. Now, an electrical machine actually includes as many magnetic paths as there are magnetic poles, that is 2p pieces. Figure 3.1 illustrates, in addition to the crosssection of a magnetic circuit of a six-pole induction machine and a four-pole synchronous reluctance machine, a single magnetic path of the machine defined by the curves 1–2–3–4–1. The same figure also depicts the direct (d) and quadrature (q) axes of the magnetic circuit. Since we now have a rotating-field machine, the flux density wave created by the poly-phase winding of the stator rotates along the inner surface of the stator, and the depicted d- and q-axes rotate fixed to the peak value of the magnetic flux. Rotor saliency makes the machine’s magnetic circuit unsymmetrical. Differences in reluctance, and correspondingly in stator magnetizing inductance, may be found depending on the rotor position with respect to the stator. In traditional machines, the d-axis is usually placed so that when the magnetic flux joins the rotor d-axis, the minimum reluctance for the whole magnetic system is found. Vice versa, the q-axis normally represents the maximum reluctance of the magnetic circuit. In such a machine, the stator d-axis inductance is larger than the stator q-axis inductance Ld > Lq . In synchronous machines, the field windings are wound around the rotor d-axes. In permanent magnet machines, however, the permanent magnet material itself belongs to the d-axis magnetic circuit, which makes the d-axis reluctance high. Depending on the rotor construction, in permanent magnet machines, we may have ‘inverse saliency’, where the d-axis reluctance is higher than the q-axis reluctance. Correspondingly, Ld < Lq .
P1: OTA/XYZ P2: ABC c03 JWBK312-Pyrhonen
November 23, 2008
11:47
Printer Name: Yet to Come
Design of Magnetic Circuits
155
d
d
q
d
2
2
q
3
1
1
3 d
4
4
D ri D ryi hys
hyr
hdr
D ri δ
Ds
δ
hys
Dr hds
Dr Ds
Dsyi
D syi
Dse
Dse
(a)
hds
(b)
Figure 3.1 Main dimensions of the cross-section of an electrical machine, and the instantaneous positions of the magnetic axes and the magnetic circuit of (a) a six-pole poly-phase induction machine and (b) a four-pole synchronous reluctance machine. The magnetic circuits can be considered to rotate with the stator flux of the machine. The d-axis of the rotor of a synchronous machine remains stationary at every instant, but in an induction machine, the d-axis is only virtual and turns with respect to the rotor at the speed of slip
In some cases, for instance for control purposes, the d- and q-axes may also be defined for magnetically symmetrical induction machines. From the machine design point of view, the division to d- and q-axes in symmetrical machines is not as important as in unsymmetrical machines. In nonsalient synchronous machines, the division to d- and q-axes is natural, since despite the fact that the reluctances and hence also the inductances are about equal, the rotor is unsymmetrical because of the field winding wound around the rotor d-axis. If the main flux of the machine is assumed to flow along the d-axis, the magnetic circuit of the figure comprises half of the main flux, created by the current penetrating the magnetic circuit in the area in question. When the machine is running under load, the magnetizing current of an induction machine is the sum of the stator and rotor currents. When computing this sum, both the windings of the stator and the rotor have to be taken into account so that in each conductor penetrating the area S (here the slots of the stator and the rotor), there
P1: OTA/XYZ P2: ABC c03 JWBK312-Pyrhonen
November 23, 2008
11:47
Printer Name: Yet to Come
156
Design of Rotating Electrical Machines
flows a current that is measurable at the stator and at the rotor. We now obtain according to Amp`ere’s law a magnetizing resultant current linkage Θ, which, as a result of the occurrence of flux, is divided into magnetic voltages U m,i in the different sections of the magnetic circuit. Normally, a majority, 60–95% of the sum of the magnetic voltages, consists usually of the magnetic voltages of the air gaps. In the design of a magnetic circuit, we start by magnetizing the machine with a single winding, for instance a magnetizing winding. Later, when the performance characteristics of the machine are analysed, other windings and their effects are considered. In the rotor of a synchronous reluctance machine, there is no winding, and thus the torque production is based only on the saliency effects. Saliency is created in the depicted machine by cutting suitable sections from the rotor plate. A corresponding illustration of the magnetic circuit and the main dimensions of a six-pole DC machine and an eight-pole salient-pole synchronous machine is given in Figure 3.2. A d
d
q
2
q
2
d d
3
3
1 1
4
4
D ri
h ys
hyr
D ri
hdr
D ryi
δ
Ds
hds
h yr h dr
D ryi h ys
Ds
D syi
D syi
D se
D se
(a)
(b)
δ
hds
Figure 3.2 Main dimensions of the cross-sections of a six-pole DC machine (or an outer pole synchronous machine) and an eight-pole salient-pole synchronous machine, and the instantaneous positions of one of the magnetic axes and the magnetic circuit. In a DC machine or a synchronous machine, the position of the magnetic axes can be considered more easily than with an asynchronous machine, since the magnetic axes d and q are defined by the position of the rotor. DC machines are usually constructed as external (inward-projecting) pole machines, and the poles of the stator chiefly define the position of the magnetic axes of the machine. The field windings of both machine types are placed around the poles lying on the d-axis
P1: OTA/XYZ P2: ABC c03 JWBK312-Pyrhonen
November 23, 2008
11:47
Printer Name: Yet to Come
Design of Magnetic Circuits
157
synchronous machine can operate magnetized either with the direct current in the field winding or with permanent magnets, or completely without DC magnetizing as a synchronous reluctance machine. However, in the rotor circuit of the reluctance machine, special attention has to be paid to maximizing the ratio of the reluctances of q- and d-axes to reach maximum torque. Here, the torque is completely based on the difference of inductances between the direct and quadrature axes. When the ratio of inductances Ld /Lq is about 7–10–16, approximately the same machine constants can be applied with a reluctance machine as with induction motors. Doubly salient reluctance machines (switched reluctance, SR machines) differ both structurally and by their performance characteristics from traditional electrical machines. However, there are also some similarities. Figure 3.3 illustrates two doubly salient reluctance machines that differ from each other by their ratios of poles (8/6 and 6/4); in these machines, both the stator and the rotor have salient poles. A crucial difference when compared with traditional machines is that the stator and rotor have different numbers of magnetizing poles. Such a machine cannot operate without power electronics or other switches, and therefore it has to be designed in accordance with the accompanying electronics.
A
A D
B'
B'
C'
C
B
C'
C B
D' A'
A' hys
hdr δ Ds
Dr
hds
Dsyi Dse (a)
(b)
Figure 3.3 Basic types of an SR machine. (a) In an 8/6 machine, there are eight stator poles and six rotor poles. Correspondingly, there are six stator poles and four rotor poles in a 6/4 motor (b). The pole numbers of the stator and the rotor always differ from each other. The rotor of both machines turns clockwise when the poles A and A0002 are magnetized. The illustration of an eight-pole machine shows the path of the main flux when the poles A and A0002 are being magnetized
P1: OTA/XYZ P2: ABC c03 JWBK312-Pyrhonen
November 23, 2008
11:47
Printer Name: Yet to Come
158
Design of Rotating Electrical Machines
The definition of the current linkage is essential for the design of the magnetic circuit to create the desired flux density and the respective magnetizing current. The current linkage per pole pair is solved by applying Equation (1.10) and by calculating the line integral of the field strength H along a suitable integration path, for instance along the route 1–2–3–4–1 of Figure 3.2: 0001 Fm = Uˆ m,tot =
0003 H · dl =
l
J · dS = S
0002
ˆ tot . I =Θ
(3.3)
S
In rotating-field machines, the peak value of the magnetic voltage Uˆ m,tot is usually calculated by following the flux line at the peak value of the air-gap flux density around the magnetic circuit. l is the unit vector parallel to the integration path, S is the unit vector of the surface of the cross-section of the electrical machine (in practice, e.g. either the teeth area of an induction machine or the teeth area of the stator of a synchronous machine, and the pole bodies of the rotor are observed), and finally, J is the density of the current penetrating the magnetic circuit. The task is simplified by calculating the sum of all the currents I penetrating ˆ the magnetic circuit. The sum of all currents is called current linkage and denoted Θ 0005 tot . Equation (3.3) describes how the current linkage of the machine has to equal the mmf l H · dl of the machine. When computing the peak magnetic voltage Uˆ m,tot over a single magnetic circuit of the machine, the task can be divided so that each section of the magnetic circuit is analysed for instance at the peak value of the flux density. Now, the total magnetic voltage over a complete pole pair is written as Uˆ m,tot =
00020003 i
Hi · dli =
0002
Uˆ m,i .
(3.4)
i
To be able to calculate the current linkage required by the iron parts of the magnetic circuit, the magnetizing curve of the material in question has to be known. The magnetizing curve illustrates the flux density reached in the material as a function of the magnetic field strength B = f (H). First, the magnetic flux density Bi in each section of the magnetic circuit of the machine is calculated with the selected air-gap flux density. Next, the field strength Hi is checked from the BH curve of the material in question. Finally, in simple cases, the result is multiplied by the length of the section parallel to the magnetic path li , which yields the magnetic voltage of the section in question Uˆ m,i = li Hi . In the appendices, BH curves are given for some typical electric sheets measured with DC magnetization. Since Equation (2.15) gives the height of the amplitude of the current linkage wave of a rotating-field winding, and such an amplitude magnetizes half of a single magnetic circuit, we usually treat only half of a single magnetic circuit in the computation of magnetic voltˆ s1 ages. For instance, the stator of an asynchronous machine has to produce the amplitude Θ of the fundamental current linkage. Correspondingly, on the rotor pole of a nonsalient-pole synchronous machine, there has to be a current producing a similar current linkage ˆ s1 = Uˆ m,δe + Uˆ m,ds + Uˆ m,dr + 1/2Uˆ m,ys + 1/2Uˆ m,yr . Θ
(3.5a)
P1: OTA/XYZ P2: ABC c03 JWBK312-Pyrhonen
November 23, 2008
11:47
Printer Name: Yet to Come
Design of Magnetic Circuits
159
Uˆ m,δe denotes the magnetic voltage of a single air gap, Uˆ m,d the magnetic voltages of the teeth, and Uˆ m,ys + Uˆ m,yr the magnetic voltages of the stator and rotor yokes. The subscripts s and r denote the stator and the rotor. Equation (3.5a) represents only one pole of the magnetic ˆ s1 are thus acting on the total magnetic circuit. Two current linkage amplitudes Uˆ m,tot = 2Θ path. In an internal salient-pole machine (e.g. an ordinary synchronous machine), the correlation of the magnetic voltage and a single pole is ˆ pr = Uˆ m,δe + Uˆ m,ds + Uˆ m,pr + 1/2Uˆ m,ys + 1/2Uˆ m,yr . Θ
(3.5b)
Uˆ m,pr is the magnetic voltage of the salient pole of the rotor. In an external salient-pole machine (e.g. an ordinary DC machine or an external pole synchronous machine) the current linkage of a single pole can be written correspondingly as ˆ ps = Uˆ m,δe + Uˆ m,ps + Uˆ m,dr + 1/2Uˆ m,ys + 1/2Uˆ m,yr . Θ
(3.5c)
The magnetizing of doubly salient reluctance machines (SR machines) depends on the constantly changing shape of the magnetic circuit in question. The torque calculation of SR machines is carried out for instance based on the principle of virtual work. The machine is always seeking the maximum inductance of the magnetic circuit, which is reached when the poles of the rotor have turned to the position of the magnetic poles of the stator.
3.1 Air Gap and its Magnetic Voltage The air gap of an electrical machine has a significant influence on the mmf of the magnetic circuit. Nonsalient-pole machines and salient-pole machines have different types of air gaps that greatly influence machine performance.
3.1.1 Air Gap and Carter Factor To be able to calculate the magnetic voltage manually over an air gap, the geometry of the air gap has to be simplified. Often in an electrical machine, the surfaces of both the stator and the rotor are split with slots. The flux density always decreases at the slot opening (Figure 3.4), and therefore it is not easy to define the average flux density of the slot pitch between the stator and the rotor. However, in 1901 F.W. Carter provided a solution to the problem of manual calculation (Carter, 1901). On average, according to Carter’s principle, the air gap seems to be longer than its physical measure. The length of the physical air gap δ increases with the Carter factor kC . The first correction is carried out by assuming the rotor to be smooth. We obtain δes = kCs δ.
(3.6)
The Carter factor kCs is based on the dimensions in Figure 3.5. When determining the Carter factor, the real flux density curve is replaced with a rectangular function so that the flux remains constant under the teeth and is zero at the slot opening; in other words, the shaded
P1: OTA/XYZ P2: ABC c03 JWBK312-Pyrhonen
November 23, 2008
11:47
Printer Name: Yet to Come
160
Design of Rotating Electrical Machines
B δ
τu
slot pitch
(a)
τu
(b)
Figure 3.4 (a) Flux diagram under a stator slot along one slot pitch, and (b) the behaviour of the airgap flux density Bδ along a slot pitch. At the slot opening, there is a local minimum of flux density. The flux density on the right side of the slot is slightly higher than on the left side, since a small current is flowing in the slot towards the observer
B(α)
be
B av S1
S1
1.0 2B0 /Bav B av B av
B max kC = Bav
S2 Bmin /Bav 0
α 2 Qs
δ
–0.5
0
0.5
b1
τu
Figure 3.5 Distribution of air-gap flux density Bδ (α) in a distance of one slot pitch τ u . α is the angle revolving around the periphery of the machine. be is the equivalent slot opening
P1: OTA/XYZ P2: ABC c03 JWBK312-Pyrhonen
November 23, 2008
11:47
Printer Name: Yet to Come
Design of Magnetic Circuits
161
areas S1 + S1 in Figure 3.5 are equal to S2 . The equivalent slot opening be , in which the flux density is zero, is be = κb1 ,
(3.7a)
where 2 2 b1 b1 2δ κ= ≈ arctan − ln 1 + π 2δ b1 2δ The Carter factor is kC =
b1 δ 5+
τu τu = . τu − be τu − κb1
b1 δ
.
(3.7b)
(3.8)
The Carter factor is also the ratio of the maximum flux density Bmax to the average flux density Bav kC =
Bmax . Bav
(3.9)
The variation of the flux density assuming no eddy currents damping the flux variation is β=
B0 (Bmax − Bmin ) 1 + u 2 − 2u , = = Bmax 2Bmax 2(1 + u 2 ) Bmin 2u = , Bmax 1 + u2 2 b1 b1 u= + 1+ . 2δ 2δ
(3.10a) (3.10b)
(3.10c)
When both the stator and rotor surfaces are provided with slots, we calculate kCs first by assuming the rotor surface to be smooth. The calculations are repeated by applying the calculated air gap δ es and the slot pitch of the rotor τ r , and by assuming the stator surface to be smooth. We then obtain kCr . Finally, the total factor is kC,tot ≈ kCs · kCr ,
(3.11)
which gives us the equivalent air gap δ e δe ≈ kC,tot δ ≈ kCr δes .
(3.12)
The influence of slots in the average permeance of the air gap is taken into account by replacing the real air gap by a longer equivalent air gap δ e . The result obtained by applying the above equations is not quite accurate, yet usually sufficient in practice. The most accurate result is obtained by solving the field diagram of the air gap with the finite element method. In this method, a dense element network is employed, and an accurate field solution is found as illustrated in Figure 3.4. If the rotor surface lets eddy currents run, the slot-opening-caused
P1: OTA/XYZ P2: ABC c03 JWBK312-Pyrhonen
November 23, 2008
11:47
Printer Name: Yet to Come
162
Design of Rotating Electrical Machines
flux density dips are damped by the values suggested by the Carter factor. In such a case, eddy currents may create remarkable amounts of losses on the rotor surfaces. Example 3.1: An induction motor has an air gap δ = 0.8 mm. The stator slot opening is b1 = 3 mm, the rotor slots are closed and the stator slot pitch is 10 mm. The rotor magnetic circuit is manufactured from high-quality electrical steel with low eddy current losses. Calculate the Carter-factor-corrected air gap of the machine. How deep is the flux density dip at a slot opening if the rotor eddy currents do not affect the dip (note that the possible squirrel cage is designed so that the slot harmonic may not create large opposing eddy currents)? How much three-phase stator current is needed to magnetize the air gap to 0.9 T fundamental peak flux density? The number of stator turns in series is N s = 100, the number of pole pairs is p = 2, and the number of slots per pole and phase is q = 3. The winding is a full-pitch one. Solution: κ≈
b1 /δ 3/0.8 = = 0.429, 5 + b1 /δ 5 + 3/0.8
be = κb1 = 0.429 · 3 = 1.29, τu 10 = 1.148, = τu − be 10 − 1.29
2 2 b1 b1 3 3 u= + 1+ + 1+ = = 3.984, 2δ 2δ 2 · 0.8 2 · 0.8
kCs =
β=
1 + u 2 − 2u = 0.179. 2(1 + u 2 )
The depth of the flux density dip on the rotor surface is 2B0 : 2B0 = 2β Bmax = 2βkC Bav = 2 · 0.179 · 1.148Bav = 0.41Bav . The equivalent air gap is δe ≈ kCs δ = 1.148 · 0.8 mm = 0.918 mm. At 0.9 T the peak value of the air gap field strength is ˆδ = H
0.9 T = 716 kA/m. 4π · 10−7 V s/A m
The magnetic voltage of the air gap is ˆ δ δe = 716 kA/m · 0.000 918 m = 657 A. Uˆ m,δe = H According to Equation (2.15), the amplitude of the stator current linkage is √ √ ˆ s1 = m 4 kws1 Ns 2Ism = mkws1 Ns 2Ism . Θ 2 π 2p πp
P1: OTA/XYZ P2: ABC c03 JWBK312-Pyrhonen
November 23, 2008
11:47
Printer Name: Yet to Come
Design of Magnetic Circuits
163
To calculate the amplitude, we need the fundamental winding factor for a machine with q = 3. For a full-pitch winding with q = 3, we have the electrical slot angle αu =
360◦ 360◦ = = 20◦ . 2mq 2·3·3
We have six voltage phasors per pole pair: three positive and three negative phasors. When the phasors of negative coil sides are turned 180◦ , we have two phasors at an angle of −20◦ , two phasors at an angle of 0◦ and two phasors at +20◦ . The fundamental winding factor will hence be kws1 =
2 cos (−20◦ ) + 2 cos (0◦ ) + 2 cos (+20◦ ) = 0.960. 6
Since this is a full-pitch winding the same result is found by calculating the distribution factor according to Equation (2.23)
kds1 = kws1
αus 20 sin 3 2 2 = 0.960. = αus = 20 qs sin 3 sin 2 2 sin qs
We may now calculate the stator current needed to magnetize the air gap Ism =
ˆ s1 π p 657 · π · 2 Θ √ A = 10.1 A. √ = mkws1 Ns 2 3 · 0.960 · 100 2
If an analytic equation is required to describe the flux distribution in case of an air gap slotted on only one side, an equivalent approximation introduced by Heller and Hamata (1977) can be employed. This equation yields a flux density distribution in the case of a smooth rotor in a distance of one slot. If the origin is set at the centre of the stator slot, the Heller and Hamata equations are written for a stator (see Figure 3.5) B (α) = 1 − β − β cos
π α Bmax , 0.8α0
when
0 < α < 0.8α0
and B (α) = Bmax elsewhere, when 0.8α0 < α < αd .
(3.13)
Here α0 = 2b1 /D and αd = 2π/Q s = 2τu /D. Drops in the flux density caused by stator slots create losses on the rotor surface. Correspondingly, the rotor slots have the same effect on the stator surface. These losses can be reduced by partially or completely closing the slots, by reshaping the slot edges so that the drop in the flux density is eliminated, or by using a semi-magnetic slot wedge, Figure 3.6.
P1: OTA/XYZ P2: ABC c03 JWBK312-Pyrhonen
November 23, 2008
11:47
Printer Name: Yet to Come
164
Design of Rotating Electrical Machines
special slot opening B
semi-magnetic slot wedge
semi-magnetic slot wedge no w edge
Rotor surface along a stator slot pitch
(a)
(b)
stator slot
rotor
(c)
Figure 3.6 (a) Slot opening of a semi-closed stator slot of Figure 3.4 has been filled with a semimagnetic filling (µr = 5). The flux drop on the rotor surface, caused by the slot, is remarkably reduced when the machine is running with a small current at no load. (b) Simultaneously, the losses on the rotor surface are reduced and the efficiency is improved. The edges of the stator slot can also be shaped according to (c), which yields the best flux density distribution. (b) The curve at the top
3.1.2 Air Gaps of a Salient-Pole Machine Next, three different air gaps of a salient-pole machine are investigated. The importance of these air gaps lies in the following: the first air gap is employed in the calculation when the machine is magnetized with a rotor field winding; the second is required for the calculation of the direct-axis armature reaction, and thereby the armature direct-axis inductance; and finally, the third air gap gives the armature quadrature-axis reaction and the quadrature-axis inductance. The air gaps met by the rotor field winding magnetizing are shaped with pole shoes such that as sinusoidal a flux density distribution as possible is obtained in the air gap of the machine. The air-gap flux density created by the rotor field winding magnetizing of a salient-pole machine can be investigated with an orthogonal field diagram. The field diagram has to be constructed in an air gap of accurate shape. Figure 3.7 depicts the air gap of a salient-pole machine, into which the field winding wound around the salient-pole body creates a magnetic flux. The path of the flux can be solved with a magnetic scalar potential. The magnetic field refracts on the iron surface. However, in the manual calculation of the air gaps of a synchronous machine, the permeability of iron is assumed to be so high that the flux lines leave the equipotential iron surface perpendicularly. If the proportion Θ δ of the current linkage Θ f of the rotor acts upon the air gap, each duct in the air gap takes, with the notation in Figure 3.7, a flux Φδ = µ0 Θδ l
x = Θδ Rm , nδ
(3.14)
P1: OTA/XYZ P2: ABC c03 JWBK312-Pyrhonen
November 23, 2008
11:47
Printer Name: Yet to Come
Design of Magnetic Circuits
165
main flux
τp main
flux
leakage flux
leakage flux
x δ
Figure 3.7 Field diagram of the rotor pole of an internal salient-pole synchronous machine with DC magnetizing in an area of half a pole pitch τ p /2. The figure also indicates that the amount of leakage flux in this case is about 15%, which is a typical number for pole leakage. Typically, a designer should be prepared for about 20% leakage flux when designing the field winding
where l is the axial length of the pole shoe and n the number of square elements in the radial direction. If the origin of the reference frame is fixed to the middle of the pole shoe, we may write in the cosine form µ0 Θδ Φδ = = Bˆ δ cos θ. lx nδ
(3.15)
In the field diagram consisting of small squares, the side of a square equals the average width x. The magnetic flux density of the stator surface can thus be calculated by the average width of squares touching the surface. On the other hand, nδ is the length of the flux line from the pole shoe surface to the stator surface: nδ =
δ0e µ0 Θδ = , cos θ Bˆ δ cos θ
(3.16)
where δ 0e is the air gap in the middle of the pole, corrected with the Carter factor. Now the pole shoe has to be shaped such that the length of the flux density line of the field diagram is inversely proportional to the cosine of the electrical angle θ . A pole shoe shaped in this way creates a cosinusoidal magnetic flux density in the air gap, the peak value of which is Bˆ δ . The maximum value of flux penetrating thorough a full-pitch winding coil is called the peak value of flux, although it is not a question of amplitude here. The peak value of the flux is obtained
P1: OTA/XYZ P2: ABC c03 JWBK312-Pyrhonen
November 23, 2008
11:47
Printer Name: Yet to Come
166
Design of Rotating Electrical Machines
by calculating a surface integral over the pole pitch and the length of the machine. In practice, ˆm the flux of a single pole is calculated. Now, the peak value is denoted Φ τp
0003l 0002 0003 2 ˆm = Φ
Bˆ δ cos 0
τ − 2p
x π dxdl 0002 , τp
(3.17)
where l0002 is the equivalent core length l0002 ≈ l + 2δ in a machine without ventilating ducts (see Section 3.2), τ p is the pole pitch, τ p = π D/(2p), x is the coordinate, the origin of which is in the middle of the pole, and θ = xπ/τp . When the flux density is cosinusoidally distributed, we obtain by integration for the air-gap flux ˆ m = 2 Bˆ δ τpl 0002 . Φ π
(3.18)
By reformulating the previous equation, we obtain 0002 0002 ˆ δ. ˆ m = Dl Bˆ δ = µ0 Dl Θ Φ p pδ0e
(3.19)
Next, the air gap experienced by the stator winding current linkage is investigated. The stator winding is constructed such that its current linkage is distributed fairly cosinusoidally on the stator surface. The stator current linkage creates an armature reaction in the magnetizing inductances. As a result of the armature reaction, this cosinusoidally distributed current linkage creates a flux of its own in the air gap. Because the air gap is shaped so that the flux density created by the rotor pole is cosinusoidal, it is obvious that the flux density created by the stator is not cosinusoidal, see Figure 3.8. When the peak value of the fundamental current linkage of the stator is on the d-axis, we may write ˆ d0002 cos θ. Θs1 (θ ) = Θd0002 (θ ) = Θ
(3.20)
The amplitude of the current linkage is calculated by Equation (2.15). The permeance dΛ of the duct at the position θ is dΛ = µ0
dS Dl dθ cos θ . = µ0 nδ 2 p δ0e
(3.21)
The magnetic flux density at the position θ is Bd (θ ) =
µ0 ˆ 0002 dΦ = Θ cos2 θ. dS δ0e d
(3.22)
The distribution of the air-gap flux density created by the stator current is proportional to the square of the cosine when the current linkage of the stator is on the d-axis. To be able to calculate the inductance of the fundamental, this density function has to be replaced by a cosine function with an equal flux. Thus, we calculate the factor of the fundamental of the
P1: OTA/XYZ P2: ABC c03 JWBK312-Pyrhonen
November 23, 2008
11:47
Printer Name: Yet to Come
Design of Magnetic Circuits
Bd (q )
167
Θ s1 (q )
Θs1(q )
Bˆ 1q
Bˆ1d τp
q
δ0
τp
d
d
q
Bq (q ) d
q
(a)
(b)
Figure 3.8 (a) Cosine-squared flux density Bd (θ), created in the shaped air gap by a cosinusoidal stator current linkage Θ s1 occurring on a direct axis of the stator, where the peak value of the fundamental component of Bd (θ ) is Bˆ 1d . (b) The cosinusoidal current linkage distribution on the quadrature axis creates a flux density curve Bq (θ ). The peak value of the fundamental component of Bq (θ) is Bˆ 1q
Fourier series. The condition for keeping the flux unchanged is µ0 ˆ 0002 Θ δ0e d
+π/2 0003
+π/2 0003
cos θ dθ = Bˆ 1d 2
−π/2
cos θ dθ .
(3.23)
−π/2
The amplitude of the corresponding cosine function is thus π µ0 ˆ 0002 µ0 ˆ 0002 Θd = Θ. Bˆ 1d = 4 δ0e δde d
(3.24)
In the latter presentation of Equation (3.24), the air gap δ de is an equivalent d-axis air gap experiencing the current linkage of the stator. Its theoretical value is δde =
4δ0e . π
(3.25)
Figure 3.8a depicts this situation. In reality, the distance from the stator to the rotor on the edge of the pole cannot be extended infinitely, and therefore the theoretical value of Equation (3.25) is not realized as such (it is only an approximation). However, the error is only marginal, because when the peak value of the cosinusoidal current linkage distribution is at the direct axis, the current linkage close to the quadrature axis is very small. Equation (3.25) gives an interesting result: the current linkage of the stator has to be higher than the current linkage of the rotor, if the same peak value of the fundamental component of the flux density is desired with either the stator or rotor magnetization.
P1: OTA/XYZ P2: ABC c03 JWBK312-Pyrhonen
November 23, 2008
11:47
Printer Name: Yet to Come
168
Design of Rotating Electrical Machines
Figure 3.8b illustrates the definition of the quadrature air gap. The peak value of the stator current linkage distribution is assumed to be on the quadrature axis of the machine. Next, the flux density curve is plotted on the quadrature axis, and the flux Φ q is calculated similarly as in Equation (3.19). The flux density amplitude of the fundamental component corresponding to this flux is written as pΦq µ0 ˆ 0002 = Bˆ 1q = Θ, Dl δqe q
(3.26)
ˆf = Θ ˆ0002 = where δ qe is the equivalent quadrature air gap. The current linkages are set equal: Θ d 0002 ˆ Θq , the equivalent air gaps behaving inversely proportional to the flux density amplitudes 1 1 1 Bˆ δ : Bˆ 1d : Bˆ 1q = : : . δ0e δde δqe
(3.27)
Direct and quadrature equivalent air gaps are calculated from this (inverse) proportion. A direct-axis air gap is thus approximately 4δ 0e /π . A quadrature-axis air gap is more problematic to solve without numerical methods, but it varies typically between (1.5–2–3) × δ de . According to Schuisky (1950), in salient-pole synchronous machines, a quadrature air gap is typically 2.4-fold when compared with a direct air gap in salient-pole machines. The physical air gap on the centre line of the magnetic pole is set to δ 0 . The slots in the stator create an apparent lengthening of the air gap when compared with a completely smooth stator. This lengthening is evaluated with the Carter factor. On the d-axis of the rotor pole, the length of an equivalent air gap is now δ 0e in respect of the pole magnetization. In this single air gap, the pole magnetization has to create a flux density Bˆ δ . The required current linkage of a single pole is Θf =
δ0e Bˆ δ . µ0
(3.28)
The value for current linkage on a single rotor pole is Θ f = N f I f , when the DC field winding current on the pole is I f and the number of turns in the coil is N f . The flux linkage and the inductance of the rotor can now be easily calculated. When the pole shoes are shaped according to the above principles, the flux of the phase windings varies at no load as a siˆ m sin ωt, when the rotor rotates at an electric angular nusoidal function of time, Φm (t) = Φ frequency ω. By applying Faraday’s induction law as presented in Equation (1.8), we can calculate the induced voltage. The applied form of the induction law, which takes the geometry of the machine into account, is written with the flux linkage Ψ as e1 (t) = −
dΨ (t) dΦm (t) = −kw1 N , dt dt
(3.29)
and the fundamental component of the voltage induced in a single pole pair of the stator is written as ˆ m cos ωt. e1p (t) = −Np kw1 ωΦ
(3.30)
Here N p is the number of turns of one pole pair of the phase winding. The winding factor kw1 of the fundamental component takes the spatial distribution of the winding into account.
P1: OTA/XYZ P2: ABC c03 JWBK312-Pyrhonen
November 23, 2008
11:47
Printer Name: Yet to Come
Design of Magnetic Circuits
169
ˆ m does not penetrate all The winding factor indicates that the peak value of the main flux Φ ˆ m. the coils simultaneously, and thus the main flux linkage of a pole pair is Ψˆ m = Np kw1 ωΦ By applying Equation (3.18) we obtain for the voltage of a pole pair e1p (t) = −Np kw1 ω
2 ˆ Bδ τpl 0002 cos ωt, π
(3.31)
the effective value of which is 2 1 1 E 1p = √ ωNp kw1 Bˆ δ τpl 0002 = √ ωΨˆ mp . π 2 2
(3.32)
The maximum value of the air-gap flux linkage Ψˆ mp of a pole pair is found at instants when the main flux best links the phase winding observed. In other words, the magnetic axis of the winding is parallel to the main flux in the air gap. The voltage of the stator winding is found by connecting an appropriate amount of pole pair voltages in series and in parallel according to the winding construction. Previously, the air gaps δ de and δ qe were determined for the calculation of the direct and quadrature stator inductances. For the calculation of the inductance, we have also to define the current linkage required by the iron. The influence of the iron can easily be taken into account by correspondingly increasing the length of the air gap, δdef = (Uˆ m,δde /(Uˆ m,δde + Uˆ m,Fe ))δde . We now obtain the effective air gaps δ def and δ qef . With these air gaps, the main inductances of the stator can be calculated in the direct and quadrature directions L pd =
000e2 Dδ l 0002 2 µ0 kw1 Np , π pδdef
L pq =
000e2 Dδ l 0002 2 µ0 kw1 Np . π pδqef
(3.33)
N p is the number of turns (N s /p) of a pole pair. The main inductance is the inductance of a single stator phase. To obtain the single-phase equivalent circuit magnetizing inductance, for instance for a three-phase machine, the main inductance has to be multiplied by 3/2 to take the effects of all three windings into account. When deriving the equations, Equation (2.15) for the current linkage of a stator is required, and also the equation for a flux linkage of a single pole pair of the stator Ψmp = −kw1 Np
2 ˆ Bδ τpl 0002 π
which is included in the previous voltage equations. The peak value for the air-gap flux density is calculated with an equivalent air gap and a stator current linkage, which leads to Equation (3.33). The inductances will be discussed in detail later in Section 3.9 and also in Chapter 7.
3.1.3 Air Gap of Nonsalient-Pole Machine In nonsalient-pole machines, unlike in salient-pole machines, the shape of the air-gap flux density cannot be adjusted by shaping the air gaps. The rotor of a salient-pole machine is a steel cylinder provided with slots. The magnetizing winding is inserted in these slots. The air gap of such a machine is in principle equal at all positions, and thus, to create a sinusoidal flux density distribution, the magnitude of the current linkage acting upon different positions of
P1: OTA/XYZ P2: ABC c03 JWBK312-Pyrhonen
November 23, 2008
11:47
Printer Name: Yet to Come
170
Design of Rotating Electrical Machines
rotor current linkage
α
If zQ
q
q
d
(a)
d
(b)
Figure 3.9 (a) Magnetizing winding of a nonsalient-pole rotor and (b) the distribution of the current linkage on the surface of the rotor cylinder, when the number of conductors is equal in all slots. The form of the current linkage can be improved by selecting the number of turns in the slots or the slot positions better than in the above example
the air gap has to be varied. To get a correct result,the conductors of the magnetizing winding have to be divided accordingly among the slots of the rotor, Figure 3.9. The air gap of the nonsalient-pole machine is equal in all directions. The current linkage of the stator meets the same air gap as the current linkage of the rotor, and thus, with the notation in Equation (3.27), we obtain δ0e ≈ δde ≈ δqe .
(3.34)
Because both the stator and rotor are slotted, the Carter factor is applied twice. The main inductance of a salient-pole machine can be calculated from Equation (3.33) by employing an effective air gap δ ef , which takes also the effect of the iron into account and increases δ 0e with the proportion of the iron. A nonsalient-pole machine has only a single main inductance, because all the air gaps are equal. In practice, the slots in the rotor make the inductance of the quadrature axis slightly smaller than the inductance of the direct axis in these machines. Asynchronous machines are usually symmetrical, and therefore only a single equivalent air-gap length is defined for them, similarly as for nonsalient-pole machines. The main inductance is calculated from Equation (3.33). Usually, DC machines are external pole, salient-pole machines, and therefore their air gaps have to be determined by a method similar to the solution presented previously for a salient-pole machine. The above determination of the air gaps for a salient-pole machine is valid also for a synchronous salient-pole reluctance machine. With respect to an SR machine, the concept of an air gap has to be redefined, since the whole operation of the machine is based on the deformations of the magnetic circuit. The air gap is changing constantly when the machine rotates. The difference in the direct and quadrature inductances defines the average torque produced by the machine. The magnetic voltage over the air gap is usually calculated with the smallest air gap and at the peak value of the flux density. If the equivalent air gap in the middle of the pole is δ e , we obtain Bˆ δ Uˆ m,δe = δe . (3.35) µ0
P1: OTA/XYZ P2: ABC c03 JWBK312-Pyrhonen
November 23, 2008
11:47
Printer Name: Yet to Come
Design of Magnetic Circuits
171
3.2 Equivalent Core Length At an end of the machine, and at possible radial ventilating ducts, the effects of field fringings that may occur have to be taken into account. This is done by investigating the field diagrams of the ventilating ducts and of the ends of the machine. Figure 3.10 illustrates the influence of the edge field at the machine end on the equivalent length l0002 of the machine. The flux density of the machine changes in the direction of the shaft as a function of the z-coordinate B = B(z). The flux density remains approximately constant over a distance of the sheet core and decreases gradually to zero along the shaft of the machine as an effect of the edge field. This edge field is included in the main flux of the machine, and thus it participates also in torque production. In manual calculations, the lengthening of the machine caused by the edge field can be approximated by the equation l 0002 ≈ l + 2δ.
(3.36)
This correction is of no great significance, and therefore, when desired, the real length l is accurate enough in the calculations. In large machines, however, there are ventilating ducts that reduce the equivalent length of the machine, see Figure 3.11. Here, we can estimate the length of the machine by applying the Carter factor again. By applying Equations (3.7a) and (3.7b) and by substituting the width of the slot opening b with the width of the ventilating duct bv we obtain bve = κbv .
(3.37)
l' B(z)
B l
δ z
Figure 3.10 Orthogonal field diagram for the determination of the edge field at the end of the machine
P1: OTA/XYZ P2: ABC c03 JWBK312-Pyrhonen
November 23, 2008
11:47
Printer Name: Yet to Come
172
Design of Rotating Electrical Machines
bv bve
ventilating duct stator B
δ
bv
l δ
rotor
Figure 3.11 Influence of radial ventilating ducts on the equivalent length of the machine and the behaviour of the flux density in the vicinity of the ventilating duct
The number of ventilating ducts being nv in the machine (in Figure 3.11, nv = 3), the equivalent length of the machine is approximated by l 0002 ≈ l − n v bve + 2δ.
(3.38)
If there are radial ventilating ducts both in the rotor and in the stator, as depicted in Figure 3.12, the above method of calculation can in principle be employed. In that case, the flux density curve has to be squared, as was done previously, and the equivalent width of the
stator
δ
δ
bv
bv rotor
bve B B
(a)
bve
(b)
Figure 3.12 (a) In the stator and the rotor, the ventilating ducts are axially at the same positions. (b) The ventilating ducts are at different positions in the stator and in the rotor
P1: OTA/XYZ P2: ABC c03 JWBK312-Pyrhonen
November 23, 2008
11:47
Printer Name: Yet to Come
Design of Magnetic Circuits
173
duct bve , Equation (3.7a), is substituted in Equation (3.38). In the case of Figure 3.12a, the number of rotor ventilating ducts is equal to the number of ventilating ducts of the stator and the sum of the width of the stator and rotor ventilation ducts has to be substituted for b in Equation (3.7b). In the case of Figure 3.12b, the number of ducts nv has to be the total number of ducts. Example 3.2: A synchronous machine has a stator core 990 mm long. There are 25 substacks of laminations 30 mm long and a 10 mm cooling duct after each stack (24 cooling ducts all together). The air-gap length is 3 mm. Calculate the effective stator core length of the machine when (a) the rotor surface is smooth, (b) there are 24 cooling ducts in the rotor opposite the stator ducts and (c) there are 25 cooling ducts in the rotor opposite the stator substacks. Solution: (a) κ =
bv δ 5+ bδv
=
10 3 5+ 10 3
= 0.40,
bve = κbv = 0.40 · 10 mm = 4.0 mm,
l 0002 ≈ l − n v bve + 2δ = 990 − 24 · 4.0 + 2 · 3 mm = 900 mm. (b) κ =
bvs +bvr δ vr 5+ bvs +b δ
=
10+10 3 5+ 10+10 3
= 0.571,
bve = κbv = 0.571 · 10 mm = 5.71 mm,
l 0002 ≈ l − n v bve + 2δ = 990 − 24 · 5.71 + 2 · 3 mm = 859 mm. (c) As in (a), κ = 0.40, bve = 4.0 mm for the stator and rotor ducts, l 0002 ≈ l − n vs bves − n vr bver + 2δ = 990 − 24 · 4.0 − 25 · 4.0 + 2 · 3 mm = 800 mm.
3.3 Magnetic Voltage of a Tooth and a Salient Pole 3.3.1 Magnetic Voltage of a Tooth When there are Qs slots in the stator, we obtain the slot pitch of the stator by dividing the air-gap periphery by the number of slots τu =
πD . Qs
(3.39)
Figure 3.13a illustrates the flux density distribution in an air gap, the other surface of which is smooth, and Figure 3.13b illustrates a tooth and a slot pitch. The magnetic voltage of a tooth is calculated at a peak of the air-gap fundamental flux density. When a tooth occurs at a peak value of the air-gap flux density, an apparent tooth flux passes the slot pitch ˆ d0002 = l 0002 τu Bˆ δ . Φ
(3.40)
P1: OTA/XYZ P2: ABC c03 JWBK312-Pyrhonen
November 23, 2008
11:47
Printer Name: Yet to Come
174
Design of Rotating Electrical Machines τu
B (θ )
B1
hd
bd
(a)
(b)
Figure 3.13 (a) Semi-closed slots and the flux density in the air gap. (b) The dimensions of a tooth and a slot: the height hd of the tooth and the slot, slot pitch τ u , and the width of the tooth bd
If the teeth of the machine are not saturated, almost the complete flux of the slot pitch flows along the teeth, and there is no flux in the slots and the slot insulations. Neglecting the slot opening and taking into account the space factor kFe of iron, we obtain for a tooth with a uniform diameter and cross-sectional area Sd Sd = kFe (l − n v bv ) bd .
(3.41)
Here nv and bv are the number of ventilating ducts and their width (see Figure 3.12), and l is the total length of the machine stack. Punching influences the crystal structure of iron, and therefore the permeability on the cutting edges of the tooth is low. Thus, in the calculation of the flux density in a tooth, 0.1 mm has to be subtracted from the tooth width, that is bd = breal − 0.1 mm in Equation (3.41) and the following equations. During the running of the motor, a relaxation phenomenon occurs, and the magnetic properties recover year by year. The space factor of iron kFe depends on the relative thickness of the insulation of the electric sheet and on the press fit of the stack. The insulators are relatively thin, their typical thickness being about 0.002 mm, and consequently the space factor of iron can in practice be as high as 98%. A space factor varies typically between 0.9 and 0.97. Assuming that the complete flux is flowing in the tooth, we obtain its apparent flux density ˆ0002 Φ l 0002 τu Bˆ d0002 = d = Bˆ δ . Sd kFe (l − n v bv ) bd
(3.42)
In practice, a part of the flux is always flowing through the slot along an area Su . Denoting ˆ u , we may write for a flux in the tooth iron this flux by Φ ˆ d0002 − Φ ˆu = Φ ˆ d0002 − Su Bˆ u . ˆd = Φ Φ
(3.43)
P1: OTA/XYZ P2: ABC c03 JWBK312-Pyrhonen
November 23, 2008
11:47
Printer Name: Yet to Come
Design of Magnetic Circuits
175
By dividing the result by the area of the tooth iron Sd we obtain the real flux density of the tooth iron Su Bˆ d = Bˆ d0002 − Bˆ u , Sd
Su l 0002 τu = − 1. Sd kFe (l − n v bv ) bd
where
(3.44)
The apparent flux density of the tooth iron Bˆ d0002 can be calculated when the peak value Bˆ δ of the fundamental air-gap flux density is known. To calculate the flux density in the slot, the magnetic field strength in the tooth is required. Since the tangential component of the field strength is continuous at the interface of the iron and the air, that is Hd = Hu , the flux density of the slot is ˆ d. Bˆ u = µ0 H
(3.45)
Su ˆ d. Bˆ d = Bˆ d0002 − µ0 H Sd
(3.46)
The real flux density in the tooth is thus
Now, we have to find a point that satisfies Equation (3.46) on the BH curve of the electric sheet in question. The easiest way is to solve the problem graphically as illustrated in Figure ˆ dhd. 3.14. The magnetic voltage Uˆ m,d in the tooth is then approximately H When a slot and a tooth are not of equal width, the flux density is not constant, and therefore the magnetic voltage of the tooth has to be integrated or calculated in sections: 0003h d Uˆ m,d =
Hd · dl. 0
B Bˆd'
Bˆ d = Bˆ d' –
Su µ Hˆ Sd 0 d
Bˆd
Hˆd
H
Figure 3.14 Definition of the flux density Bˆ d of the tooth with the BH curve of the electrical sheet and the dimensions of the tooth
P1: OTA/XYZ P2: ABC c03 JWBK312-Pyrhonen
November 23, 2008
11:47
Printer Name: Yet to Come
176
Design of Rotating Electrical Machines
Example 3.3: The stator teeth of a synchronous machine are 70 mm high and 14 mm wide. Further, the slot pitch τ u = 30 mm, the stator core length l = 1 m, there are no ventilation ducts, the space factor of the core kFe = 0.98, the core material is Surahammars Bruk electrical sheet M400-65A (Figure Example 3.3), the air gap δ = 2 mm and the fundamental flux density of the air gap Bˆ d = 0.85 T. Calculate the magnetic voltage over the stator tooth. 2.0 1.8 B/T 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0
2
4
6
8
10
12 14 16 18 Hˆ d =13 .3kA /m H/kA/m
Figure Example 3.3 BH curve of the material used in Example 3.3 and its solution
Solution: The effective core length l0002 = 1000 + 2 · 2 mm = 1004 mm. The apparent flux density of the tooth Equation (3.42) is Bˆ d0002 =
1004 · 30 0.85 T = 1.88 T. 0.98 · 1000 · (14 − 0.1)
The intersection of the BH curve of the electrical sheet M400-65A and the line (3.46) gives Bˆ δ = 1.88 −
1004 · 30 ˆ d. − 1 4 · π · 10−7 H 0.98 · 1000 · (14 − 0.1)
ˆ d = 13.3 kA/m and the magnetic The figure above gives the field strength of the teeth H voltage 0003h d Uˆ m,d =
Hd · dl = 13 300 · 0.07 A = 931 A. 0
P1: OTA/XYZ P2: ABC c03 JWBK312-Pyrhonen
November 23, 2008
11:47
Printer Name: Yet to Come
Design of Magnetic Circuits
177
3.3.2 Magnetic Voltage of a Salient Pole The calculation of the magnetic voltage of a salient pole is in principle quite similar to the procedure introduced for a tooth. However, there are certain particularities: for instance, the magnetic flux density of the pole shoe is often so small that the magnetic voltage required by it can be neglected, in which case only the magnetic voltage required by the pole body has to be defined. When determining the magnetic voltage of the pole body, special attention has to be paid to the leakage flux of the pole body. Figure 3.7 shows that a considerable amount of the flux of the pole body is leaking. The leakage flux comprises 10–30% of the main flux. Because of the leakage flux, the flux density Bˆ p at the foot of a uniform pole body of cross-sectional ˆ m as area Sp is thus written with the main flux Φ ˆm Φ Bˆ p = (1.1 . . . 1.3) . (3.47) Sp ˆ m will be discussed later at the end of the The calculation of the peak value of the flux Φ chapter. Because of the variation of the flux density, the magnetic voltage Uˆ m,p of the pole body has to be integrated: 0003h dr Uˆ m,p =
H · dl. 0
3.4 Magnetic Voltage of Stator and Rotor Yokes Figure 3.15 depicts the flux distribution of a two-pole asynchronous machine when the machine is running at no load. The flux penetrating the air gap and the teeth section is divided into two equal parts at the stator and rotor yokes. At the peak of the air-gap flux density on the d-axis, the flux densities in the yokes are zero. The maximum flux densities for the yokes occur on the q-axis, on which the air-gap flux density is zero. The maximum value for the flux
Figure 3.15 Flux diagram for a two-pole induction motor running at no load. The shaft of the machine is far more reluctive than the rotor sheet, and therefore, at the plotted lines, no flux seems to penetrate the rotor shaft. Furthermore, the shaft is often jagged at the rotor bundle, and thus in practice there are air bridges between the rotor iron and the shaft
P1: OTA/XYZ P2: ABC c03 JWBK312-Pyrhonen
November 23, 2008
11:47
Printer Name: Yet to Come
178
Design of Rotating Electrical Machines
density of the stator yoke can be calculated on the q-axis without difficulty, since half of the main flux is flowing there: ˆm ˆm Φ Φ Bˆ ys = = . 2Sys 2kFe (l − n v bv ) h ys
(3.48)
Here Sys is the cross-sectional area of the stator yoke, kFe is the space factor of iron and hys is the height of the yoke, see Figure 3.16. Respectively, the maximum flux density at the rotor yoke is ˆm ˆm Φ Φ Bˆ yr = = . 2Syr 2kFe (l − n v bv ) h yr
(3.49)
d-axis
The calculation of the magnetic voltage of the yoke is complicated, since the flux density at the yoke changes constantly over the pole pitch, and the behaviour of the field strength is highly nonlinear, see Figure 3.16b. Magnetic potential difference Uˆ m,ys over the whole yoke has to be determined by calculating the line integral of the magnetic field strength between the two poles of the yoke
real integration path
Hˆ ys
ideal integration path Hys
Bˆ ys
Bys τp /2
Ds
τp
d-axis
d-axis
Dr
Φ ys /2
q-axis
Dryi
q-axis
D se h yr
hys (a)
(b)
Figure 3.16 (a) Flux of the stator yoke in an electrical machine, and the integration path of the magnetic voltage. (b) The behaviour of the flux density of the stator yoke, and the strongly nonlinear behaviour of the field strength H ys , which explain the difficulties in the definition of the magnetic voltage of the yoke. The ideal integration path is indicated by the thick black dotted line and the real integration path by any flux line, for example the thick grey dotted line
P1: OTA/XYZ P2: ABC c03 JWBK312-Pyrhonen
November 23, 2008
11:47
Printer Name: Yet to Come
Design of Magnetic Circuits
179
integration path 0003q Uˆ m,ys =
H · dl.
(3.50)
d
The field diagram has to be known in order to be able to define the integral. Precise calculation is possible only with numerical methods. In manual calculations, the magnetic voltages of the stator and rotor yoke can be calculated from the equations ˆ ys τys , Uˆ m,ys = c H ˆ yr τyr . Uˆ m,yr = c H
(3.51) (3.52)
ˆ ys and H ˆ yr are the field strengths corresponding to the highest flux density, and τ ys Here H and τ yr are the lengths of the pole pitch in the middle of the yoke (Figures 3.1 and 3.16): τys =
π (Dse − h ys ) , 2p
(3.53a)
τyr =
π (Dryi − h yr ) . 2p
(3.53b)
The coefficient c takes into account the fact that the field strength is strongly nonlinear in the yoke, and that the nonlinearity is the stronger, the more saturated the yoke is at the q-axis. ˆ ys or H ˆ yr , see Figure For most places in the yokes, the field strength is notably lower than H 3.16. The coefficient is defined by the shape of the air-gap flux density curve, by the saturation of the machine and by the dimensions of the machine. However, the most decisive factor is the maximum flux density in the yoke of the machine. If there is a slot winding in the machine, the magnetic voltage of the yoke can be estimated by the curve illustrated in Figure 3.17. Figure 3.16 shows clearly that as the peak flux density in the q-axis approaches the iron saturation flux density, the field strength H reaches very high peak values in the yoke. Since the
0.8
c 0.6 0.4 0.2 0 0
0.5
1.0
1.5
Bˆyr, Bˆys /T
2.0
Figure 3.17 Influence of the maximum flux density of the stator or rotor yoke in the definition of the coefficient c, applied in the determination of magnetic voltage
P1: OTA/XYZ P2: ABC c03 JWBK312-Pyrhonen
November 23, 2008
180
11:47
Printer Name: Yet to Come
Design of Rotating Electrical Machines
peak H value is possible only on the q-axis, the average value of H decreases and consequently so does the coefficient c. In the case of a salient-pole stator or rotor, a value of c = 1 can be applied for the yoke on the salient-pole side of the machine. Example 3.4: In a four-pole machine, the outer diameter Dse = 0.5 m, the stator air gap diameter is Ds = 0.3 m, the machine stator core length is 0.3 m and the air gap is 1 mm. The peak value of the fundamental air-gap flux density is 0.9 T. The stator yoke height hys = 0.05 m. Calculate the stator yoke magnetic voltage when the material is M400-50A. Solution: Assuming a sinusoidal flux density distribution in the air gap according to Equation (3.18), the peak value of the air gap flux is ˆ m = 2 Bˆ δ τpl 0002 = 2 · 0.9 T · π · 0.3 m · (0.3 m + 0.002 m) = 0.0408 V s. Φ π π 2·2 This flux is divided into two halves in the stator yoke. The yoke flux density is therefore ˆm ˆm Φ Φ 0.0408 V s Bˆ ys = = 1.39 T. = = 2Sys 2kFe (l − n v bv ) h ys 2 · 0.98 · 0.3 m · 0.05 m At this flux density, the maximum field strength in the yoke is about 400 A/m, see Appendix A. The stator yoke length is τys =
π (Dse − h ys ) π (0.5 m − 0.05 m) = = 0.353 m. 2p 2·2
According to Figure 3.17, the coefficient c = 0.26, and hence we get for the stator yoke magnetic voltage ˆ ys τys = 0.26 · 400 A/m · 0.353 m = 37 A. Uˆ m,ys = c H
3.5 No-Load Curve, Equivalent Air Gap and Magnetizing Current of the Machine In the determination of the current linkage required by the magnetic circuit, magnetic voltages corresponding to a certain peak value Bˆ δ of the magnetic flux density of the air gap of the machine have been calculated for all parts of the machine in turn. By selecting several values for Bˆ δ and by repeating the above calculations, we may plot the curves for the magnetic voltages required by the different parts of the machine, and, as their sum, we obtain the current linkage required by the magnetic circuit of the complete machine: Uˆ Uˆ ˆ m = Uˆ mδ + Uˆ m,ds + Uˆ m,dr + m,ys + m,yr . Θ 2 2
(3.54)
P1: OTA/XYZ P2: ABC c03 JWBK312-Pyrhonen
November 23, 2008
11:47
Printer Name: Yet to Come
Design of Magnetic Circuits
Bˆ
181
Uˆ m,
Uˆ m, ds
(Uˆ
Uˆ m, dr
m, ys
)
+ Uˆ m, yr /2
e
Uˆ m, e
Uˆ m, Fe /2
Θˆm
Figure 3.18 No-load curve of the machine (thick line) and its composition of the influences of the stator teeth ds, the air gap δe, the rotor teeth dr and the halves of stator and rotor yokes 1/2(ys, yr). In some cases, the whole magnetic circuit is replaced with equivalent air gaps; consequently, the magnetizing curve can be replaced at an operation point by a straight line (dotted line). Note that the proportion of the magnetic voltage of the iron is strongly exaggerated. In well-designed machines, the proportion of the current linkage required by the iron is only a fraction of the current linkage required by the air ˆ m . The current linkage gaps. The total current linkage required by half a magnetic circuit is denoted Θ ˆm needed in the whole magnetic circuit is 2Θ
As we can see, the equation sums the magnetic voltages of one air gap, one stator tooth, one rotor tooth and halves of the stator and rotor yokes. This is illustrated in Figure 3.18. The curve corresponds to the no-load curve defined in the no-load test of the machine, in which the flux density axis is replaced by the voltage, and the current linkage axis is replaced by the magnetizing current. According to Figure 3.18, the magnetic voltage required by half of the iron in the complete magnetic circuit is Uˆ m,Fe ˆ m − Uˆ m,δe . =Θ 2
(3.55)
If the circuit has to be linearized (the dotted line in Figure 3.18), the air gap lengthened with the Carter factor is replaced by the effective air gap δ ef , which also takes the reluctance of the iron into account. This air gap can be defined by a proportion ˆm δef Θ = . δe Uˆ m,δe
(3.56)
ˆ m of the current linkage corresponding to the operating point of the When the amplitude Θ machine has been defined, we are able to calculate the magnetizing current required by the
P1: OTA/XYZ P2: ABC c03 JWBK312-Pyrhonen
November 23, 2008
11:47
Printer Name: Yet to Come
182
Design of Rotating Electrical Machines
machine. So far, no distinction has been made here between a machine that is magnetized with the alternating current of the rotating-field winding (cf. asynchronous machines) and a machine magnetized with the direct current of the field winding (cf. synchronous machines). In the case of a salient-pole machine (a synchronous machine or a DC machine), the magnetizing field winding direct current I fDC required for one pole is
IfDC =
ˆm Θ . Nf
(3.57)
Here N f is the total number of turns on the magnetizing pole of the machine. Pole windings can in turn be suitably connected in series and in parallel to reach a desired voltage level and current. On the rotor of a nonsalient-pole synchronous machine, there has to be an equal number of coil turns per pole as in a salient-pole machine, that is a number of N f . These turns are divided to the poles in the same way as in a salient-pole machine. The winding is now inserted in slots as illustrated in Figure 3.9. In all rotating-field machines (induction machines, various synchronous machines) the stator winding currents have a significant effect on the magnetic state of the machine. However, only induction machines and synchronous reluctance machines are magnetized with the magnetizing current component of the stator current alone. In the cases of separately magnetized machines and permanent magnet machines, the magnitude of the armature reaction is estimated by investigating the stator magnetization. For rotating-field machines, the required effective value of the alternating current I sm is calculated with Equation (2.15). For the sake of convenience, Equation (2.15) is repeated here for the fundamental: √ √ ˆ s1 = m 4 kws1 Ns 2Ism = mkws1 Ns 2Ism . Θ 2 π 2p πp
(3.58)
ˆ s1 is the amplitude of the fundamental of the current linkage of the stator winding. kws1 Θ denotes the winding factor of the fundamental of the machine. N s /2p is the number of turns per pole, when N s is the number of series-connected turns of the stator (parallel branches being neglected). m is the phase number. A single such amplitude magnetizes half of one magnetic circuit. If the magnetic voltage is defined for half a magnetic circuit as shown in Figure 3.18, and thus includes only one air gap and half of the iron circuit, the magnetizing current of the whole pole pair is calculated with this equation. Pole pairs in rotating-field machines can also be connected both in series and in parallel, depending on the winding of the machine. In integral slot windings, the base winding is of the length of a pole pair. Thus, in a four-pole machine for instance, the pole pairs of the stator can be connected either in series or in parallel to create a functional construction. In the case of fractional slot windings, a base winding of the length of several pole pairs may be required. These base windings can in turn be connected in series and in parallel as required. The magnetizing current measured at the poles of the machine thus depends on the connection of the pole pairs. The effective value of the magnetizing current for a single
P1: OTA/XYZ P2: ABC c03 JWBK312-Pyrhonen
November 23, 2008
11:47
Printer Name: Yet to Come
Design of Magnetic Circuits
183
pole pair I sm,p is ˆ mp Θ , Ism,p = √ m 4 kw1 Ns 2 2 π 2p ˆ mp π p Θ . Ism,p = √ 2mkw1 Ns
(3.59)
(3.60)
In a complete magnetic circuit, there are two amplitude peaks, but the same current proˆ s1 altoduces both a positive and a negative amplitude of the current linkage and, hence, 2Θ gether magnetizes the whole magnetic circuit. The current linkage produced by the magnetizing current I sm,p for the complete pole pair is ˆ s1 = 2 2Θ
ˆ s1 π p ˆ s1 Θ mkws1 Ns √ 2Θ 2Ism,p ⇔ Ism,p = mk N √ = √ . πp 2 πws1p s 2 2mkws1 Ns
ˆ s1 must equal 2Θ ˆ mp . As we can see, the result is, in practice, the same when we know that 2Θ Example 3.5: The sum of magnetic voltages in half of the magnetic circuit of a fourpole induction motor is 1500 A. There are 100 turns in series per stator winding, and the fundamental winding factor is kw1 = 0.925. Calculate the no-load stator current. Solution: The current linkage amplitude produced by a stator winding is, according to Equation (2.15), √ √ ˆ s1 = m 4 kws1 Ns 2Ism = mkws1 Ns 2Ism . Θ 2 π 2p πp Rearranging, we get for the RMS value of the stator magnetizing current Ism =
ˆ s1 π p 1500 A · π · 2 Θ √ = 24 A. √ = mkws1 Ns 2 3 · 0.925 · 100 2
3.6 Magnetic Materials of a Rotating Machine Ferromagnetic materials and permanent magnets are the most significant magnetic materials used in machine construction. In these materials, there are elementary magnets, known as Weiss domains. These Weiss domains are separated from each other by Bloch walls, which are transition regions at the boundaries between magnetic domains. The width of a Bloch wall varies between a few hundred and a thousand atomic spacings, Figure 3.19. The increase in the magnetic momentum of a body under the influence of an external field strength is a result of two independent processes. First, in a weak external field, those Weiss domains that are already positioned in the direction of the field increase at the expense of
P1: OTA/XYZ P2: ABC c03 JWBK312-Pyrhonen
November 23, 2008
11:47
Printer Name: Yet to Come
184
Design of Rotating Electrical Machines
S N
Wei ss do
main
Bloc h wa ll
Wei
ss d
oma
in
Figure 3.19 Bloch wall separating Weiss domains. For instance, the width of the transition region (Bloch wall) is 300 grid constants (about 0.1 mm)
the domains positioned in the opposite direction, see Figure 3.20. Second, in a strong magnetic field, the Weiss domains that are in the normal direction turn into the direction of the field. Turning elementary magnets requires a relatively high field strength. In magnetically soft materials, the Bloch wall displacement processes are almost completed before the Weiss domains begin to turn in the direction of the external field. Without an external field strength, the Bloch walls are at rest. In practice, the walls are usually positioned at impurities and crystal defects in materials. If the body experiences only
(a)
H=0
(c)
H
(b)
H
(d)
H
Figure 3.20 In a weak external field, the walls of the Weiss domains are in reversible motion so that the magnetic momentum of the whole body increases. (a) The external field strength is zero. For (b) and (c), as the field strength increases, those Weiss domains which were not originally in the direction of the external field decrease in size. (d) The domain originally in the normal direction has started to turn in the direction of the external field
P1: OTA/XYZ P2: ABC c03 JWBK312-Pyrhonen
November 23, 2008
Design of Magnetic Circuits
11:47
Printer Name: Yet to Come
185
a weak external field strength, the Bloch walls are only slightly displaced from rest. If the field strength is removed, the Bloch walls return to their original positions. This process can be observed even with a high-precision microscope. If we let the field strength increase abruptly, the Bloch walls leave their position at rest and do not return to their original positions even if the field strength is removed. These wall displacements are called Barkhausen jumps, and they result from ferromagnetic hysteresis and Barkhausen noise. It is possible that a Weiss domain takes over one of its neighbouring domains in a single Barkhausen jump, particularly if the material includes a few, large crystal defects. If a magnetic field strength that is high enough begins to act on a Bloch wall, it moves from its original position towards the next local energy maximum. If the magnetic field strength is low, the wall does not cross the first energy peak, and as the action of the force ceases, the wall returns to its original position. However, if the field strength is greater than the above, the wall passes the first local energy maximum and cannot return to its original position, unless an opposite field strength is acting upon it. The displacement of Bloch walls in different materials takes place over a wide range of field strengths. In ferromagnetic materials, some of the walls are displaced at low field strengths, while some walls require a high field strength. The largest Barkhausen jumps occur at medium field strengths. In some cases, all the walls jump at the same field strength so that saturation magnetization is reached at once. Usually, the magnetization takes place in three separate phases. Figure 3.21 illustrates the magnetizing curve of a ferromagnetic material, with three distinctive phases. In the first phase, the changes are reversible; in the second phase, Barkhausen jumps occur; and in the third phase, orientation of the Weiss domains takes place and all the domains turn in the direction determined by the external field strength. Next, the saturation magnetization and the respective saturation polarization J s are reached. Figure 3.22 helps to comprehend the formation of Weiss domains. The sections of the figure illustrate a ferromagnetic crystal divided into different Weiss domains. In Figure 3.22a, the crystal comprises only a single Weiss domain that looks like000f a permanent magnet with N and S poles. In this kind of system, the magnetic energy, 1/2 B H dV , is high. The energy density corresponding to case (a) in Figure 3.22 is for iron of magnitude µ0 Ms2 = 23 kJ/m3 . In Figure 3.22b, the magnetic energy has decreased by half when the crystal has been divided into two Weiss domains. In Figure 3.22c, it is assumed that the number of domains is N, and consequently the magnetic energy is reduced to 1/Nth part of case (a). If the domains are settled as in cases (d) and (e), there is no magnetic field outside the body, and the magnetic energy of the crystal structure is zero. Here the triangular areas are at an angle of 45◦ with the square areas. No external magnetic field is involved as in Figures 3.22a, b and c. The magnetic flux is closed inside the crystal. In reality, Weiss domains are far more complicated than the cases exemplified here. However, the domains are created inside the body so that the magnetic energy of the body seeks the minimum value. In the design of electromechanical applications, some of the most valuable information about the magnetizing of a material is obtained from the BH curve of the material in question. Figure 3.23 depicts a technical magnetizing curve of a ferromagnetic material. In the illustration, the flux density B is given as a function of field strength H.
P1: OTA/XYZ P2: ABC c03 JWBK312-Pyrhonen
November 23, 2008
11:47
Printer Name: Yet to Come
186
Design of Rotating Electrical Machines
M, J, B B=M+B0
c
M, J
b
B0 = µ0 H
a
H
Figure 3.21 Magnetizing curve of a ferromagnetic material; in area a, only reversible Bloch wall displacements take place; in area b, irreversible Barkhausen jumps occur; and in area c, the material saturates when all Weiss domains are settled in parallel positions. Magnetization M saturates completely in area c. The polarization curve (JH) of the material is equal to the magnetizing curve. A BH curve differs from these curves for the amount of the addition caused by the permeability of a vacuum. As is known, the BH curve does not actually saturate at a horizontal plane in area c, but continues upwards with a slope defined by µ0 as the field strength increases
N
S
(a)
(b)
(c)
(d)
(e)
Figure 3.22 Division of a ferromagnetic crystal into Weiss domains in such a way that the energy minimum is realized
P1: OTA/XYZ P2: ABC c03 JWBK312-Pyrhonen
November 23, 2008
11:47
Printer Name: Yet to Come
Design of Magnetic Circuits
187
B, J
B = µ0
H
Bs B
Br
Js J
–H cJ
–H cB
Hs
H
Figure 3.23 Technical magnetizing curve and a corresponding polarization curve of a ferromagnetic material, that is a hysteresis loop. The coercivity related to the flux density −H cB is the field strength required to restore the magnetic field density B from remanence flux density Br to zero. The remanence flux density Br is reached when the external magnetic field strength is restored to zero from a very high value. The saturation flux density Bs corresponds the saturation polarization J s (Bs = J s + µ0 H s )
3.6.1 Characteristics of Ferromagnetic Materials The resistivity of pure ferromagnetic metals is usually of a few microohm centimetres (10−8 000e m), as shown in Table 3.1. Since laminated structures are applied mainly to prevent the harmful effects of eddy currents, it is advisable to select a sheet with maximum resistivity. The different elements alloyed with iron have different effects on the electromagnetic properties of iron. In alloys, the Table 3.1 Physical characteristics of certain ferromagnetic materials (pure ferromagnetic materials at room temperature are iron, nickel and cobalt). Adapted from Heck (1974) Material
Composition
Iron
100% Fe 99.0% Fe 99.8% Fe 4% Si 16% Al, iron for the rest 9.5% Si, 5.5% Al, iron for the rest 99.6% Ni 99% Co 99.95% Co
Ferrosilicon Aluminium–iron Aluminium–ferrosilicon
Nickel Cobalt
Density/kg/m3
Resistivity/µ000e cm
Melting point/◦ C
— 7874 7880 7650 6500
9.6 9.71 9.9 60 145
— 1539 1539 1450 —
8800
81
—
8890 8840 8850
8.7 9 6.3
— 1495 —
P1: OTA/XYZ P2: ABC c03 JWBK312-Pyrhonen
November 23, 2008
11:47
Printer Name: Yet to Come
188
Design of Rotating Electrical Machines
ρ /µ Ωcm
80 70 Si 60
Al
50 40 30 Ni 20
Co
10
Cu
0 0
1
2
3
4 5 6 7 8 compounding agent, % per weight
Figure 3.24 Effect of silicon, aluminium, nickel, cobalt and copper alloying on the resistivity of iron. Adapted from Heck (1974)
resistivity ρ tends to increase when compared with pure elements. This is an interesting characteristic that has to be taken into account if we wish to reduce the amount of eddy currents in magnetic materials. Figure 3.24 illustrates the increase in resistivity for iron, when a small amount of an other element is alloyed with it. Copper, cobalt and nickel increase the resistivity of iron only marginally, whereas aluminium and silicon give a considerable increase in the resistivity. Consequently, materials suitable for electric sheets are silicon–iron and aluminium–iron. A silicon-rich alloy makes the material brittle, and thus in practice the amount of silicon is reduced to a few per cent in the alloy. Electric sheets have been developed with a silicon content of 6%. An aluminium-rich alloy makes the material very hard (the Vickers hardness HV is about 250 for a material with an aluminium content of 16% by weight), which may have an influence on the usability of the material. However, the resistivity of the material is so high that it proves a very interesting alternative for certain special applications. In the literature (Heck, 1974), an equation is introduced for the resistivity ρ of AlFe alloy as a function of aluminium content pAl (percentage by weight): ρ = (9.9 + 11 pAl ) µ000e cm.
(3.61)
This is valid at a temperature of +20 ◦ C, where the aluminium content is ≤4% by weight. The temperature coefficient of resistivity decreases sharply when the aluminium content increases, and it is 350 × 10−6 /K when the aluminium content of the alloy is 10% by weight. When the alloying is in the range where the occurrence of Fe3 Al is possible, for instance if the aluminium content is 12–14%, the resistivity of the material depends on the cooling method.
P1: OTA/XYZ P2: ABC c03 JWBK312-Pyrhonen
November 23, 2008
11:47
Printer Name: Yet to Come
Design of Magnetic Circuits
189
ρ/ µΩ cm 160
140 cooling in water 120 100 80 Fe3 Al
60
cooling 30 K/h
40 20 0 0
2
4
6
8
10
12
14
16
compounding agent % per weight
Figure 3.25 Resistivity of aluminium–iron alloy as a function of the proportion of admixing material. The resistivity is also partly dependent on the cooling rate of the material. Fe3 Al compound is created when the cooling takes place slowly, about 30 K/h. Adapted from Heck (1974)
As shown in Figure 3.25, the resistivity of a material cooled rapidly from 700 ◦ C is notably higher than for a material that is cooled more slowly (30 K/h). The resistivity reaches a value of 167 µ000e cm when the proportion of aluminium is 17% by weight, but above this content the alloy becomes paramagnetic. Aluminium–iron alloys have been investigated from the beginning of the twentieth century, when it was discovered that the addition of aluminium to iron had very similar effects as the addition of silicon. With small aluminium contents, the coercivity of the AlFe alloys, hysteresis losses and saturation flux density do not differ significantly from the respective properties of SiFe alloys. As the aluminium content increases, the resistivity increases, whereas coercitivity, hysteresis losses and saturation flux density decrease. Heck (1974) gives an equation for the saturation flux density of AlFe alloys as a function of aluminium content pAl (% by weight): Bs = (2.164 − 0.057 pAl ) V s/m2 .
(3.62)
According to Heck (1974), the density ρ of the alloy may be written as ρ = (7.865 − 0.117 pAl ) kg/m3 .
(3.63)
Figure 3.26 illustrates half of the hysteresis loop of an AlFe alloy, the proportion of aluminium being 16 atomic per cent. The figure shows that the saturation flux density Bs = 1.685 T given by Equation (3.62) is sufficiently accurate. Iron–aluminium alloys can be employed for instance as laminating materials to reduce the harmful effects of eddy currents in solid parts. Due to its hardness, the alloy has been used in
P1: OTA/XYZ P2: ABC c03 JWBK312-Pyrhonen
November 23, 2008
11:47
Printer Name: Yet to Come
190
Design of Rotating Electrical Machines
B/T 2.0 10
1.0
0
50
100
H/A/cm
Figure 3.26 Half of a hysteresis loop of an AlFe alloy, the proportion of aluminium being 16 atomic per cent (8.4% by weight). The resistivity of the material is about 84 µ000e cm at a temperature of +20 ◦ C, and the temperature coefficient of the resistivity is very low, of magnitude 350 ppm (parts per million). On the above curve, the field strength values have to be multiplied by 10
tape recorder magnetic heads, for instance. Aluminium can also be employed together with silicon as an alloying material of iron, but the commercial electric sheets are usually silicon alloys. The alloying of both aluminium and silicon reduces the saturation flux density of iron, but the decrease is not very rapid when compared for instance with carbon, which, already with a content of 0.5%, makes iron unfit for a magnetic circuit. The magnetic properties of a material depend on the orientation of the crystals of the material. The crystals may be in random directions, and therefore anisotropy is not discernible in the macroscopic magnetizing curve of the material. However, the crystals may also be positioned so that the anisotropy is discernible at a macroscopic scale. In that case, the magnetizing curve is different depending on the direction of magnetization. The material is then anisotropic, and it is said to have a magnetic texture. The selection of the most favoured crystal orientations is based on several factors. For instance, internal stresses, crystal defects and impurities may ease the orientation when the material is rolled or heat treated in a magnetic field. Finally, all the most favoured directions of the crystals are more or less parallel. In that case, the material is said to have a crystal structure or a crystal texture. This kind of crystal texture is technically important, because the whole body can be treated as a single crystal. There are two significant cases that enable mass production of crystal orientation: one is the Goss texture, common mainly in silicon–irons; and the other is a cubic texture, common in 50% NiFe alloys. It is also possible to produce silicon-containing irons
P1: OTA/XYZ P2: ABC c03 JWBK312-Pyrhonen
November 23, 2008
11:47
Printer Name: Yet to Come
Design of Magnetic Circuits
(a)
191
(b)
Figure 3.27 (a) Cubic texture and (b) Goss texture. The arrow points in the rolling direction of the sheet. The cubic texture produces nonoriented materials and the Goss texture produces oriented materials. The oriented materials have different magnetic properties in different directions
with a cubic crystal texture. Figure 3.27 depicts the orientation of crystals in these textures with respect to rolling direction. In a crystal lattice with a Goss texture, only one corner of the cube is parallel to the rolling direction, which is also the main magnetizing direction in technical applications. In a crystal lattice with a cubic texture, the whole side of the cube is parallel to the rolling plane, and thus a favoured crystal orientation occurs also in the normal direction. For both textures, a rectangular magnetizing curve is typical, since the saturation flux density is reached without rotation of the Weiss domains. Also, a relatively high coercive force is typical of both textures, since the spontaneous magnetizing of the crystals remains easily in the direction of the external magnetic field. In electrical machine construction, both oriented and nonoriented silicon–iron electric sheets are important materials. Oriented electric sheets are very anisotropic, and their permeability perpendicular to the rolling direction is notably lower than in the longitudinal direction. Oriented sheets can be employed mainly in transformers, in which the direction of the flux has always to be same. In large electrical machines also, an oriented sheet is used, since, due to the large dimensions of the machine, the sheet can be produced from elements in which the direction of flux remains unchanged regardless of the rotation of the flux. Oriented sheet material can be employed also in small machines, as long as it is ensured during machine construction that the sheets are assembled at random so that the permeance of the machine does not vary in different directions. However, the magnetic properties of an oriented sheet in the direction deviating by 45–90◦ from the rolling direction are so poor that using an oriented sheet is not necessarily advantageous in rotating electrical machines. Figure 3.28 illustrates the influence of the rolling direction in the iron losses and the permeability of the material. The main principle in machine construction is that those elements of rotating machines, which experience a rotating field, are produced from nonoriented electric sheets, the properties of which are constant irrespective of the rolling direction. Figure 3.29 depicts the
P1: OTA/XYZ P2: ABC c03 JWBK312-Pyrhonen
November 23, 2008
11:47
Printer Name: Yet to Come
192
Design of Rotating Electrical Machines
4.0
2.0 B5 /T
P15 /W/kg P15
B5 2.0
1.0
0
0 0o
o
10
o
20
o
30
o
40
o
50
o
60
o
70
o
o
80
90
deviation from rolling direction
Figure 3.28 Iron losses P15 of a transformer sheet M6 at a flux density of 1.5 T, a frequency of 50 Hz and a flux density B5 with an alternating current, when the effective value of the field strength is 5 A/m. Reproduced by permission of Surahammars Bruk AB
2.5 B /T
M800-65A M400-65A
100 H
2.0
10 H 1.5 1.0 0.5 0 0
0.5
1
1.5
2
2.5 H /A/cm
3
Figure 3.29 DC magnetizing curves of nonoriented electrical sheets, produced by Surahammars Bruk. The silicon content of M400-65A is 2.7% and of M800-65A about 1%. The resistivity of M400-65A is 46 µ000e cm, and of M700-65A 25 µ000e cm. As defined in the European Standard EN 10106, the standard grade of the material expresses the iron losses of the sheet at a peak flux density of 1.5 T and a frequency of 50 Hz, and also the thickness of the material. Thus, the grade M800-65A means that the dissipation power is 8 W/kg and the thickness of the sheet is 0.65 mm. Reproduced by permission of Surahammars Bruk AB
P1: OTA/XYZ P2: ABC c03 JWBK312-Pyrhonen
November 23, 2008
11:47
Printer Name: Yet to Come
Design of Magnetic Circuits
193
DC magnetizing curves of two nonoriented electric sheets, produced by Surahammars Bruk AB.
3.6.2 Losses in Iron Circuits In rotating machines, the machine parts are influenced by an alternating flux in different ways. For instance, in an asynchronous machine, all the parts of the machine experience an alternating flux. The frequency of the stator is the frequency f s fed by the network or an inverter. The frequency f r of the rotor depends on the slip s and is fr = s · fs .
(3.64)
The outer surface of the rotor and the inner surface of the stator experience high harmonic frequencies caused by the slots. Also, the discrete distribution of the windings in the slots creates flux components of different frequencies both in the stator and in the rotor. The variation of the flux in the rotor surface of an asynchronous machine can be restricted with certain measures to a slow variation of the main flux. In that case, the rotor in some constructions can be produced from solid steel. In different synchronous machines (synchronous reluctance machines, separately magnetized machines, permanent magnet machines), the base frequency f s of the armature core (usually stator) is the frequency of the network (50 Hz in Europe) or the frequency of the supplying frequency converter, and the frequency of the rotor is zero in the stationary state. However, the rotor surface experiences high-frequency alternating flux components because of a changing permeance caused by the stator slots. During different transients, the rotor of a synchronous motor is also influenced by an alternating flux. The rotor of a synchronous machine can be produced from solid steel since, in normal use, harmonic frequencies occur only on the surface of the rotor. The amplitudes of these frequencies are quite low because of the large air gaps that are common especially in nonsalient-pole machines. In DC machines, the frequency of the stator is zero, and the flux varies only during transients, if we neglect the high-frequency flux variation caused by the permeance harmonics on the surface of the pole shoe. DC-magnetized machine parts can be produced from cast steel or thick steel sheet (1–2 mm). However, the armature core experiences a frequency that depends on the rotation speed and the number of pole pairs. In a modification of a DC series-connected machine, an AC commutator machine, all the parts of the machine are influenced by an alternating flux, and therefore the entire iron circuit of the machine has to be produced from thin electric sheet. In a doubly salient reluctance machine, all the machine parts experience pulsating flux components of varying frequencies, and thus in this case also the parts have to be made of thin electric sheet. The most common thicknesses of electric sheet are 0.2, 0.35, 0.5, 0.65 and 1 mm. There are also notably thinner sheets available for high-frequency purposes. Common nonoriented electric sheets are available at least with a thickness of 0.1 mm. Amorphous iron strips are available with a thickness of 0.05 mm in various widths. Losses in an iron circuit are of two different types, namely hysteresis losses and eddy current losses. The curves in Figure 3.30 illustrate half of a hysteresis loop for a magnetic material. Hysteresis in a material causes losses in an alternating field. First, a power loss caused
P1: OTA/XYZ P2: ABC c03 JWBK312-Pyrhonen
November 23, 2008
11:47
Printer Name: Yet to Come
194
Design of Rotating Electrical Machines
Bmax
B 4
2
B 4
Bmax 2 w1
3, + Br
B 4
Bmax 2 w2
3, + B r
Hmax
w Hy
H
H
H 1, −B r
1,−B r
(a)
(b)
(c)
Figure 3.30 Determination of hysteresis loss: (a) entire hysteresis curve, (b) w1 , magnetic energy per volume stored when moving from 1 to 2, (c) w2 , magnetic energy per volume returned when moving from 2 to 3
by the hysteresis will be investigated in iron, see Figure 3.30. When H increases from zero at point 1 to H max at point 2, an energy per volume w absorbed in a unit volume is 0003Bmax w1 =
H dB.
(3.65)
−Br
Correspondingly, when H → 0, the dissipated energy is 0003Br w2 =
H dB.
(3.66)
Bmax
The total hysteresis energy is calculated as a line integral, when the volume of the object is V 0001 H dB. (3.67) WHy = V The hysteresis energy of Equation (3.67) is obtained by travelling around the hysteresis loop. With an alternating current, the loop is circulated constantly, and therefore the hysteresis dissipation power PHy depends on the frequency f . When the area of the curve describes the hysteresis energy per volume why , we obtain for the hysteresis power loss in volume V PHy = f V wHy .
(3.68)
Empirical equations yield an approximation for the hysteresis loss n , PHy = ηV f Bmax
where the exponent n varies typically over [1.5, 2.5], η being an empirical constant.
(3.69)
P1: OTA/XYZ P2: ABC c03 JWBK312-Pyrhonen
November 23, 2008
11:47
Printer Name: Yet to Come
Design of Magnetic Circuits
B/T
195
M800-65A M400-65A
1
0.5
0
–0.5
–1
–4
–3
–2
–1
0
1
2
3
4
H /A/cm
Figure 3.31 Approximate hysteresis curves of electrical sheets produced by Surahammars Bruk AB. M400-65A contains more silicon than M800-65A, which is a common material in small motors. Reproduced by permission of Surahammars Bruk AB
In the case of an alternating flux in the iron core, the alternation of the flux induces voltages in the conductive core material. As a result, eddy currents occur in the core. These currents tend to resist changes in the flux. In solid objects, the eddy currents become massive and effectively restrict the flux from penetrating the material. The effect of eddy currents is limited by using laminations or high-resistivity compounds instead of solid ferromagnetic metal cores. Figure 3.31 depicts the hysteresis curves of two different electric sheets used in laminations, produced by Surahammars Bruk AB. Although magnetic cores are made of sheet, a thin sheet also enables eddy currents to occur when the flux alternates. The case of Figure 3.32, in which an alternating flux penetrates the core laminate, will now be investigated. If a maximum flux density Bˆ m passes through the region 12341, the peak value for the flux of a parallelogram (broken line) is obtained with the notation in Figure 3.32 ˆ = 2hx Bˆ m . Φ
(3.70)
Since d h, the effective value of the voltage induced in this path is, according to the induction law, ω Bˆ m E = √ 2hx. 2
(3.71)
The resistance of the path in question depends on the specific resistivity ρ, the length of the path l and the area S. The lamination is thin compared with its other dimensions. Hence, we
P1: OTA/XYZ P2: ABC c03 JWBK312-Pyrhonen
November 23, 2008
11:47
Printer Name: Yet to Come
196
Design of Rotating Electrical Machines
w h 4
1
path of eddy current, length l x dx
B
3
–d/2
2
d
0
d/2
Figure 3.32 Eddy currents in a sheet material. The magnetic flux density B is varying in the directions given by the arrows and the corresponding eddy currents circulate around the magnetic flux. The eddy currents try, according to Lenz’s law, to prohibit the flux from penetrating the laminations. The broken line is for electrical sheet M400-65A and the solid line for electrical sheet M800-65A produced by Surahammars Bruk AB
may simply write for the resistance of the path l
R=
2hρ ρl ≈ . S w dx
(3.72)
The flux density in the lamination creates a flux Φ = xhB. The alternating flux creates a voltage −dΦ/dt in the area observed. The induced voltage creates a current 2π f · Bˆ m 2xh √ E 2π f · Bˆ m wx dx 2 dI = = , = √ 2hρ R 2·ρ w dx
(3.73)
the differential power loss being respectively
dPFe,Ft = E dI =
(2π f · Bˆ m )2 whx 2 dx . ρ
(3.74)
P1: OTA/XYZ P2: ABC c03 JWBK312-Pyrhonen
November 23, 2008
11:47
Printer Name: Yet to Come
Design of Magnetic Circuits
197
The eddy current loss in the whole sheet is thus
PFe,Ft
000e2
0003d/2 0003d/2 2π f Bˆ m wh · x 2 dx. = dPFe,Ft = ρ 0
(3.75)
0
Since whd = V, the volume of the laminate, the eddy current loss is PFe,Ft =
V · π 2 f 2 d 2 Bˆ m2 whπ 2 f 2 d 3 Bˆ m2 = . 6ρ 6ρ
(3.76)
Here we can see the radical influence of the sheet thickness d (PFe ∼ = d3 ), the peak value ˆ of the flux density Bm and the frequency f on eddy current losses. Also, the resistivity ρ is of great significance. The measurements for silicon steel show that the eddy current loss is about 50% higher than the result given by Equation (3.76). The reason for this difference lies in the large crystal size of silicon steel. In general, we may state that as the crystal size increases, the eddy current losses in the material increase as well. Equation (3.76) can nevertheless be used as a guide when estimating eddy current losses for instance in the surroundings of a given operating point. Manufacturers usually give the losses of their materials per mass unit at a certain peak value of flux density and frequency, for instance P15 = 4 W/kg, 1.5 T, 50 Hz or P10 = 1.75 W/kg, 1.0 T, 50 Hz. Figure 3.33 illustrates the iron losses in two electric sheets of equal thickness and different resistivity. The sheets are produced from the same materials as in the previous examples. The thickness of the sheets is 0.65 mm. The manufacturers usually give combined iron losses; in other words, eddy current losses and hysteresis losses are not separated. 14 P Fe m
M800-65A
W 12 kg 10 8
M400-65A
6 4 2 0 0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
B/ T
Figure 3.33 Iron losses of two different electrical sheets at an alternating flux of 50 Hz as a function of the maximum value of the flux density. The curves include both the hysteresis loss and the eddy current loss
P1: OTA/XYZ P2: ABC c03 JWBK312-Pyrhonen
November 23, 2008
11:47
Printer Name: Yet to Come
198
Design of Rotating Electrical Machines
In manual calculations, the iron losses are found by dividing the magnetic circuit of the machine into n sections, in which the flux density is approximately constant. Once the masses mFe,n of the different areas n have been calculated, the losses PFe,n of the different parts of the machine can be approximated as follows: 0010 PFe,n = P10
Bˆ n 1T
0010
00112 m Fe,n
or
PFe,n = P15
Bˆ n 1.5 T
00112 m Fe,n .
(3.77)
Total losses can be calculated by summing the losses of different sections n. A problem occurring in the calculation of losses in rotating machines is that the loss values P15 and P10 are valid only for a sinusoidally varying flux density. In rotating machines, however, pure sinusoidal flux variation never occurs alone in any parts of the machine, but there are always rotating fields that have somewhat different losses compared with varying field losses. Also, field harmonics are present, and thus the losses, in practice, are higher than the results calculated above indicate. Furthermore, the stresses created in the punching of the sheet and also the burrs increase the loss index. In manual calculations, these phenomena are empirically taken into account and the iron losses can be solved by taking into account the empirical correction coefficients kFe,n defined for different sections n, Table 3.2: PFe =
0002
0010 kFe,n P10
n
Bˆ n 1T
00112 m Fe,n
or
PFe =
0002 n
0010 kFe,n P15
Bˆ n 1.5 T
00112 m Fe,n .
(3.78)
The iron losses discussed above are calculated only for a time-varying flux density required by the fundamental of the main flux. In addition to these losses, there are other iron losses of different origin in rotating machines. The most significant of these losses are as follows:
r End losses, which occur when the leakage flux of the machine end penetrates the solid structures of the machine, such as the end shields, creating eddy currents. Calculation of these losses is rather difficult, and in manual calculations it suffices to apply empirical correction coefficients in Equation (3.78) to take the influence of the losses into account. r Additional losses in the teeth are caused by permeance harmonics that occur when the stator and rotor teeth pass each other rapidly. To be able to calculate the losses, it is necessary to solve the frequency and the amplitude of the harmonic experienced by a tooth. The losses are calculated similarly as before. These losses are also included in the correction coefficient kFe,n . Table 3.2 Correction coefficients kFe,n for the definition of iron losses in different sections of different machine types taking the above-mentioned anomalies into account. (Coefficients are valid for AC machines with a sinusoidal supply and for DC machines.) Machine type Synchronous machine Asynchronous machine DC machine
Teeth
Yoke
2.0 1.8 2.5
1.5–1.7 1.5–1.7 1.6–2.0
P1: OTA/XYZ P2: ABC c03 JWBK312-Pyrhonen
November 23, 2008
11:47
Printer Name: Yet to Come
Design of Magnetic Circuits
199
τu 2
Figure 3.34 Paths of eddy currents in a solid pole shoe. The pattern is repeated at intervals of half a slot pitch
r In machines with solid parts, for instance on the surface of pole shoes, harmonics created by slots (cf. Figures 3.5 and 3.6) generate eddy currents that cause surface losses, Figure 3.34. Richter (1967) introduced empirical equations for solving these losses. An accurate analysis of the phenomenon is extremely difficult and requires the solution of the field equations in solid material. Usually, loss calculations are carried out assuming fundamental flux variation only. Table 3.2 roughly takes into account the harmonic behaviour in different parts of the machine by simply multiplying the values calculated by the fundamental. If a more detailed analysis is possible, the eddy current loss in the stator yoke, for instance, may be determined by calculating the tangential and radial flux density components at different frequencies. The eddy current loss in a lamination of thickness d, mass mFe , conductivity σ Fe and density ρ Fe is calculated from PFe,EC
∞ 0002
2 000e π 2 σFe 2 2 2 = f d m Fe n 2 Btan,n + Bnorm,n 6 ρFe n=1
2 000e π 2 σFe 2 2 2 kd f d m Fe Btan,1 + Bnorm,1 6 ρFe 000e ∞ 2 2 0002 Btan,n + Bnorm,n
2 000e. kd = 1 + 2 Btan,1 + Bnorm,1 n=2 =
(3.79) (3.80)
These equations require an accurate flux density solution that may be divided into the components of different harmonics.
P1: OTA/XYZ P2: ABC c03 JWBK312-Pyrhonen
November 23, 2008
11:47
Printer Name: Yet to Come
200
Design of Rotating Electrical Machines
For the hysteresis losses, there is a similar approach: PFe,Hy = cHy
∞ 0002
2 000e
2 000e f f 2 2 = cHy kd . n 2 Btan,n + Bnorm,n + Bnorm,1 m Fe m Fe Btan,1 100 100 n=1
(3.81)
The hysteresis coefficient cHy = 1.2–2 [A m4 /V s kg] for anisotropic laminations with 4% of silicon and 4.4–4.8 [A m4 /V s kg] for isotropic laminations with 2% of silicon. Even Equations (3.79–3.81), however, give too low values for the iron losses, and additional core losses have to be taken into account by suitable loss coefficients. For instance, the values of Table 3.2 may be used. Motors also face the problem of a pulse-width-modulated (PWM) supply. In a PWM supply, the losses of the motor increase in many ways. Also the iron losses increase, especially on the rotor surface. Depending on the PWM switching frequency, the overall efficiency of the motor is typically 1–2% lower in a PWM supply than in a sinusoidal supply.
3.7 Permanent Magnets in Rotating Machines Next, permanent magnet materials and their properties are discussed. Magnetically soft materials are employed to facilitate the magnetizing processes, such as the displacement of Bloch walls and the orientation of Weiss domains; see Figure 3.19. With permanent magnets, the requirements are the opposite. The displacement of a permanent magnet from the initial state is difficult. When the Weiss domains have been aligned in parallel orientations with a high external field strength, the material becomes permanently magnetized. The objective can be met by the following means. The displacement of Bloch walls is prevented by inhomogeneities and the extremely fine structure of the material. The best way to completely prevent the displacement of Bloch walls is to select so fine a structure that each particle of the material comprises only a single Weiss domain in order to create an energy minimum. In addition, the orientation of Weiss domains has to be impeded. Now, anisotropy is utilized. Both a high crystal anisotropy of the material and a high anisotropy of the shape of the crystals (rod-shaped crystals are selected) significantly impede the orientation of Weiss domains. This leads to an increase of magnetic hardness and coercivity H cJ . With rare-earth permanent magnets, a high crystal anisotropy is reached mainly by employing rare-earth metals as base materials. With hard ferrites, the crystal anisotropy is reached chiefly by orientating the particles under pressure in a magnetic field.
3.7.1 History and Characteristics of Permanent Magnets Excluding the natural magnet, magnetite (Fe3 O4 ), the development and manufacture of permanent magnet materials began in the early twentieth century with the production of carbon, cobalt and wolfram steels. These permanent magnet materials, the magnetic properties of which were rather poor, remained the only permanent magnet materials for decades. A remarkable improvement in the field was due to the discovery of AlNi and especially AlNiCo materials. The next significant step forward was taken in the 1960s, when the compounds of rare-earth metals and cobalt were invented. The most important materials were SmCo5 and
P1: OTA/XYZ P2: ABC c03 JWBK312-Pyrhonen
November 23, 2008
11:47
Printer Name: Yet to Come
Design of Magnetic Circuits
201
9 400
Neorem
BHmax/kJ/m 3
8
300 7 6 200
5 4
100
3 1
2
0 1900
1920
1940
1960
1980
2000
year
Figure 3.35 Development of the energy product of permanent magnet materials in the twentieth century: 1, cobalt steel; 2, FeCoV; 3, AlNiCo; 4, AlNiCo; 5, SmCo5 ; 6, Sm(Co, Cu,Fe,Zr)17; 7, NdFeB; 8, NdFeB; 9, NdFeB. Neorem refers to a commercial material NEOREM 503 i (produced by Neorem Magnets), the energy product of which is about 370 kJ/m3 . Adapted from Vacuumschmelze (2003). http://www.vacuumschmelze.de/dynamic/docroot/medialib/documents/broschueren/dmbrosch/PD002e. pdf
Sm2 Co17 . Later, better and more complicated variations of these two were discovered, such as Sm2 (Co, Cu, Fe, Zr)17 . After the discovery of these materials, the next significant invention was the neodymium–iron–boron permanent magnets, which nowadays yield the highest energy product. An advantage of these materials is that the rare samarium and cobalt have been replaced by the far more common neodymium and iron. The basic type of these materials is Nd15 Fe77 B8 . Figure 3.35 illustrates the development of the energy product of permanent magnets from the beginning of the twentieth century (Vacuumschmelze, 2003). The remanence flux density of commonly used SmCo5 is 1.05 T at maximum, and its energy product is 210 kJ/m3 . The maximum values for neodymium–iron–boron are 1.5 T and 450 kJ/m3 . In practice, motor-grade materials still remain below an energy product of 400 kJ/m3 . Previously, a serious problem with permanent magnet materials was the easy demagnetization of the materials. The best permanent magnet materials are quite insensitive to external field strengths and the influence of an air gap. Only short-circuit currents in hot machines may constitute a risk of demagnetization in certain structures. The most significant permanent magnetic materials in commercial production are the following:
r AlNiCo magnets are metallic compounds of iron and several other metals. The most important alloying metals are aluminium, nickel and cobalt.
r Ferrite magnets are made of sintered oxides, barium and strontium hexa-ferrite.
P1: OTA/XYZ P2: ABC c03 JWBK312-Pyrhonen
202
November 23, 2008
11:47
Printer Name: Yet to Come
Design of Rotating Electrical Machines
r RECo magnets (rare-earth cobalt magnets) are produced by a powder metallurgy technique, and comprise rare-earth metals (mainly samarium) and cobalt in the ratios of 1 : 5 and 2 : 17. The latter also includes iron, zirconium and copper. r Neodymium magnets are neodymium–iron–boron magnets, produced by a powder metallurgy technique. Neodymium magnets were invented in 1983. They are produced by a powder metallurgy process developed by Sumimoto, or by a ‘melt-spinning’ process developed by General Motors. These materials typically comprise about 65% iron, 33% neodymium and 1.2% boron, with small amounts of aluminium and niobium. In some cases, dysprosium and cobalt are also employed. Neodymium magnets are sensitive to changes in temperature. The intrinsic coercive force drops notably when the temperature rises. However, by employing other rare-earth metals as alloying elements for neodymium, the operating temperature can be raised to 180 ◦ C. Due to their properties, neodymium magnets can be employed in electromagnetic hoists, magnetically suspended trains, generators, magnetic separation devices and in various motors. The energy product of SmCo (1 : 5) magnets (invented in 1969) is 175 kJ/m3 at maximum, and SmCo (2 : 17) magnets (invented in the 1980s) typically reach 200 kJ/m3 (255 kJ/m3 maximum). The heat resistance of SmCo magnet is excellent when compared with neodymium magnets, and they can be used at temperatures up to 250 ◦ C. Furthermore, the corrosion resistance of SmCo magnets is better than that of neodymium magnets, but they are more brittle than neodymium magnets. SmCo magnets are common in applications in which the amount of material, that is the lightness, and the heat resistance are decisive factors, while the price is of little significance. Typical applications are for small stepper motors, cathode-ray tube (CRT) positioning systems, electromechanical actuators, earphones, loudspeakers, etc. As a single-phase alloy, SmCo5 is rather easily saturated. As shown in Figure 3.36, about 200 kA/m suffices for the saturation of SmCo5 , since the Bloch walls are easily displaced in the crystals. Also the coercivity in this case is rather small (H cJ ≈ 150 kA/m). The coercive force changes only when the external field strength H mag increases so high that all the grains have become magnetized against the inner leakage fields of the material. At complete saturation, there are no longer any Bloch walls in the crystals. Figure 3.36 illustrates the change in the coercive force of SmCo5 , when the field strength H mag used for the magnetization of the material is increased. A second basic material Sm2 Co17 behaves completely differently in magnetizing; see Figure 3.37. Here, at low field strengths (

Translated from the original Finnish material by Hanna Niemelä, Lappeenranta University of Technology, Finland
In one complete volume, this essential reference presents an in-depth overview of the theoretical principles and techniques of electrical machine design. This book enables you to design rotating electrical machines with its detailed step-by-step approach to machine design and thorough treatment of all existing and emerging technologies in this field.

Senior electrical engineering students and postgraduates, as well as machine designers, will find this book invaluable. In depth, it presents the following:
- Machine type definitions; different synchronous, asynchronous, DC, and doubly salient reluctance machines.
- An analysis of types of construction; external pole, internal pole, and radial flux machines.
- The properties of rotating electrical machines, including the insulation and heat removal options.
Responding to the need for an up-to-date reference on electrical machine design, this book includes exercises with methods for tackling, and solutions to, real design problems. A supplementary website hosts two machine design examples created with MATHCAD: rotor surface magnet permanent magnet machine and squirrel cage induction machine calculations. Classroom tested material and numerous graphs are features that further make this book an excellent manual and reference to the topic.
About the Author
Juha Pyrhönen is a Professor in the Department of Electrical Engineering at Lappeenranta University of Technology, Finland. He is engaged in the research and development of electric motors and drives. He is especially active in the fields of permanent magnet synchronous machines and drives and solid-rotor high-speed induction machines and drives. He has worked on many research and industrial development projects and has produced numerous publications and patents in the field of electrical engineering.
Design Of Rotating Electrical Machines Pdf Downloads
Tapani Jokinen is a Professor Emeritus in the Department of Electrical Engineering at Helsinki University of Technology, Finland. His principal research interests are in AC machines, creative problem solving and product development processes. He has worked as an electrical machine design engineer with Oy Str¨omberg Ab Works. He has been a consultant for several companies, a member of the Board of High Speed Tech Ltd and Neorem Magnets Oy, and a member of the Supreme Administrative Court in cases on patents. His research projects include, among others, the development of superconducting and large permanent magnet motors for ship propulsion, the development of high-speed electric motors and active magnetic bearings, and the development of finite element analysis tools for solving electrical machine problems.
Dc Electrical Machines Pdf
Valeria Hrabovcova is a Professor of Electrical Machines in the Department of Power Electrical Systems, Faculty of Electrical Engineering, at the University of ˇ Zilina, Slovak Republic. Her professional and research interests cover all kinds of electrical machines, electronically commutated electrical machines included. She has worked on many research and development projects and has written numerous scientific publications in the field of electrical engineering. Her work also includes various pedagogical activities, and she has participated in many international educational projects.